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Foreword

The National Curriculum Framework, 2005, recommends that children’s life at school
must be linked to their life outside the school. This principle marks a departure from
the legacy of bookish learning which continues to shape our system and causes a gap
between the school, home and community. The syllabi and textbooks developed on
the basis of NCF signify an attempt to implement this basic idea. They also attempt to
discourage rote learning and the maintenance of sharp boundaries between different
subject areas. We hope these measures will take us significantly further in the direction
of a child-centred system of education outlined in the National Policy on Education
(1986).

The success of this effort depends on the steps that school principals and teachers
will take to encourage children to reflect on their own learning and to pursue imaginative
activities and questions. We must recognise that, given space, time and freedom,
children generate new knowledge by engaging with the information passed on to them
by adults. Treating the prescribed textbook as the sole basis of examination is one of
the key reasons why other resources and sites of learning are ignored. Inculcating
creativity and initiative is possible if we perceive and treat children as participants in
learning, not as receivers of a fixed body of knowledge.

These aims imply considerable change in school routines and mode of functioning.
Flexibility in the daily time-table is as necessary as rigour in implementing the annual
calendar so that the required number of teaching days are actually devoted to teaching.
The methods used for teaching and evaluation will also determine how effective this
textbook proves for making children’s life at school a happy experience, rather than a
source of stress or boredom. Syllabus designers have tried to address the problem of
curricular burden by restructuring and reorienting knowledge at different stages with
greater consideration for child psychology and the time available for teaching. The
textbook attempts to enhance this endeavour by giving higher priority and space to
opportunities for contemplation and wondering, discussion in small groups, and
activities requiring hands-on experience.
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NCERT appreciates the hard work done by the textbook development committee
responsible for this book. We wish to thank the Chairperson of the advisory group in
Science and Mathematics, Professor J. V. Narlikar and the Chief Advisor for this book,
Professor P.K. Jain for guiding the work of this committee. Several teachers contributed
to the development of this textbook; we are grateful to their principals for making this
possible. We are indebted to the institutions and organisations which have generously
permitted us to draw upon their resources, material and personnel. As an organisation
committed to systemic reform and continuous improvement in the quality of its
products, NCERT welcomes comments and suggestions which will enable us to
undertake further revision and refinement.

Director
New Delhi National Council of Educational
20 December 2005 Research and Training
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Preface

The National Council of Educational Research and Training (NCERT) had constituted
21 Focus Groups on Teaching of various subjects related to School Education, to
review the National Curriculum Framework for School Education - 2000 (NCFSE -
2000) in face of new emerging challenges and transformations occurring in the fields
of content and pedagogy under the contexts of National and International spectrum of
school education. These Focus Groups made general and specific comments in their
respective areas. Consequently, based on these reports of Focus Groups, National
Curriculum Framework (NCF)-2005 was developed.

NCERT designed the new syllabi and constituted Textbook Development Teams

for Classes XI and XII to prepare textbooks in mathematics under the new guidelines
and new syllabi. The textbook for Class XI is already in use, which was brought in
2005.
The first draft of the present book (Class XII) was prepared by the team consisting of
NCERT faculty, experts and practicing teachers. The draft was refined by the
development team in different meetings. This draft of the book was exposed to a
group of practicing teachers teaching mathematics at higher secondary stage in different
parts of the country, in a review workshop organised by the NCERT at Delhi. The
teachers made useful comments and suggestions which were incorporated in the draft
textbook. The draft textbook was finalised by an editorial board constituted out of
the development team. Finally, the Advisory Group in Science and Mathematics and
the Monitoring Committee constituted by the HRD Ministry, Government of India
have approved the draft of the textbook.

In the fitness of things, let us cite some of the essential features dominating the
textbook. These characteristics have reflections in almost all the chapters. The existing
textbook contain 13 main chapters and two appendices. Each Chapter contain the
followings:

= Introduction: Highlighting the importance of the topic; connection with earlier
studied topics; brief mention about the new concepts to be discussed in the
chapter.

= Organisation of chapter into sections comprising one or more concepts/sub
concepts.

= Motivating and introducing the concepts/sub concepts. [llustrations have been
provided wherever possible.
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= Proofs/problem solving involving deductive or inductive reasoning, multiplicity
of approaches wherever possible have been inducted.

= Geometric viewing/ visualisation of concepts have been emphasised whenever
needed.

= Applications of mathematical concepts have also been integrated with allied
subjects like science and social sciences.

= Adequate and variety of examples/exercises have been given in each section.

= For refocusing and strengthening the understanding and skill of problem solving
and applicabilities, miscellaneous types of examples/exercises have been
provided involving two or more sub concepts at a time at the end of the chapter.
The scope of challenging problems to talented minority have been reflected
conducive to the recommendation as reflected in NCF-2005.

= For more motivational purpose, brief historical background of topics have been
provided at the end of the chapter and at the beginning of each chapter relevant
quotation and photograph of eminent mathematician who have contributed
significantly in the development of the topic undertaken, are also provided.

= Lastly, for direct recapitulation of main concepts, formulas and results, brief
summary of the chapter has also been provided.

I am thankful to Professor Krishan Kumar, Director, NCERT who constituted the
team and invited me to join this national endeavor for the improvement of mathematics
education. He has provided us with an enlightened perspective and a very conducive
environment. This made the task of preparing the book much more enjoyable and
rewarding. I express my gratitude to Professor J.V. Narlikar, Chairperson of the
Advisory Group in Science and Mathematics, for his specific suggestions and advice
towards the improvement of the book from time to time. I, also, thank Prof. G. Ravindra,
Joint Director, NCERT for his help from time to time.

I express my sincere thanks to Professor Hukum Singh, Chief Coordinator and
Head DESM, Dr. V. P. Singh, Coordinator and Professor S. K. Singh Gautam who
have been helping for the success of this project academically as well as
administratively. Also, I would like to place on records my appreciation and thanks to
all the members of the team and the teachers who have been associated with this
noble cause in one or the other form.

Pawan K. JAIN
Chief Advisor
Textbook Development Committee
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THE CONSTITUTION OF
INDIA

PREAMBLE

WE, THE PEOPLE OF INDIA, having
solemnly resolved to constitute India into a
'[SOVEREIGN SOCIALIST SECULAR
DEMOCRATIC REPUBLIC] and to secure
to allits citizens :

JUSTICE, social, economic and
political;

LIBERTY of thought, expression, belief,
faith and worship;

EQUALITY of status and of opportunity;
and to promote among them all

FRATERNITY assuring the dignity of
the individual and the *[unity and
integrity of the Nation];

IN OUR CONSTITUENT ASSEMBLY
this twenty-sixth day of November, 1949 do
HEREBY ADOPT, ENACT AND GIVE TO
OURSELVES THIS CONSTITUTION.

1. Subs. by the Constitution (Forty-second Amendment) Act, 1976, Sec.2,
for "Sovereign Democratic Republic" (w.e.f. 3.1.1977)

2. Subs. by the Constitution (Forty-second Amendment) Act, 1976, Sec.2,
for "Unity of the Nation" (w.e.f. 3.1.1977)
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Constitution of India

Part IV A (Article 51 A)

Fundamental Duties

It shall be the duty of every citizen of India —

(@)

(b)

(©
(d)

)

()
(@

()
@
V)

*(k)

to abide by the Constitution and respect its ideals and institutions, the
National Flag and the National Anthem;

to cherish and follow the noble ideals which inspired our national struggle
for freedom;

to uphold and protect the sovereignty, unity and integrity of India;

to defend the country and render national service when called upon to
do so;

to promote harmony and the spirit of common brotherhood amongst all
the people of India transcending religious, linguistic and regional or
sectional diversities; to renounce practices derogatory to the dignity of
women;

to value and preserve the rich heritage of our composite culture;

to protect and improve the natural environment including forests, lakes,
rivers, wildlife and to have compassion for living creatures;

to develop the scientific temper, humanism and the spirit of inquiry and
reform;

to safeguard public property and to abjure violence;

to strive towards excellence in all spheres of individual and collective
activity so that the nation constantly rises to higher levels of endeavour
and achievement;

who is a parent or guardian, to provide opportunities for education to
his child or, as the case may be, ward between the age of six and
fourteen years.

Note:

The Article 51A containing Fundamental Duties was inserted by the Constitution
(42nd Amendment) Act, 1976 (with effect from 3 January 1977).

*(k) was inserted by the Constitution (86th Amendment) Act, 2002 (with effect from
1 April 2010).
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(RELATIONS AND FUNCTIONS )

**There is no permanent place in the world for ugly mathematics ... . It may
be very hard to define mathematical beauty but that is just as true of
beauty of any kind, we may not know quite what we mean by a
beautiful poem, but that does not prevent us from recognising
one when we read it. — G. H. HARDY %

1.1 Introduction

Recall that the notion of relations and functions, domain,
co-domain and range have been introduced in Class XI
along with different types of specific real valued functions
and their graphs. The concept of the term ‘relation’ in
mathematics has been drawn from the meaning of relation
in English language, according to which two objects or
quantities are related if there is a recognisable connection
or link between the two objects or quantities. Let A be
the set of students of Class XII of a school and B be the
set of students of Class XI of the same school. Then some
of the examples of relations from A to B are
(1) {(a, b) € A xB:aisbrother of b}, Lejeune Dirichlet
() {(a, b) € A xB: ais sister of b}, (1805-1859)
@) {(a, b) € A xB: age of a is greater than age of b},
@iv) {(a, b) € A x B: total marks obtained by a in the final examination is less than
the total marks obtained by b in the final examination},
(v) {(a,b) e AxB: alives in the same locality as b}. However, abstracting from
this, we define mathematically a relation R from A to B as an arbitrary subset
of A x B.
If (a, b) € R, we say that a is related to b under the relation R and we write as
a R b. In general, (a, b) € R, we do not bother whether there is a recognisable
connection or link between a and b. As seen in Class XI, functions are special kind of
relations.
In this chapter, we will study different types of relations and functions, composition
of functions, invertible functions and binary operations.
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2 MATHEMATICS

1.2 Types of Relations

In this section, we would like to study different types of relations. We know that a
relation in a set A is a subset of A x A. Thus, the empty set ¢ and A x A are two
extreme relations. For illustration, consider a relation R in the set A= {1, 2, 3,4} given by
R ={(a, b): a— b =10}. This is the empty set, as no pair (a, b) satisfies the condition
a — b = 10. Similarly, R = {(a, b) : | a— b | > 0} is the whole set A x A, as all pairs
(a, b) in A x A satisfy | a — b | = 0. These two extreme examples lead us to the
following definitions.

Definition 1 A relation R in a set A is called empty relation, if no element of A is
related to any element of A, i.e., R=0) c AxA.

Definition 2 Arelation R in a set A is called universal relation, if each element of A
is related to every element of A, i.e., R=A X A.

Both the empty relation and the universal relation are some times called trivial
relations.

Example 1 Let A be the set of all students of a boys school. Show that the relation R
in A given by R = {(a, b) : a is sister of b} is the empty relation and R” = {(a, b) : the
difference between heights of a and b is less than 3 meters} is the universal relation.

Solution Since the school is boys school, no student of the school can be sister of any
student of the school. Hence, R = ¢, showing that R is the empty relation. It is also
obvious that the difference between heights of any two students of the school has to be
less than 3 meters. This shows that R” = A x A is the universal relation.

Remark In Class XI, we have seen two ways of representing a relation, namely raster
method and set builder method. However, arelation R in the set {1, 2, 3,4} defined by R
= {(a, b) : b = a + 1} is also expressed as a R b if and only if
b =a + 1 by many authors. We may also use this notation, as and when convenient.

If (a, b) € R, we say that a is related to b and we denote it as a R b.

One of the most important relation, which plays a significant role in Mathematics,
is an equivalence relation. To study equivalence relation, we first consider three
types of relations, namely reflexive, symmetric and transitive.

Definition 3 A relation R in a set A is called
(1) reflexive, if (a, a) € R, for every ae A,
() symmetric, if (a,, a,) € R implies that (a,, a))€ R, forall a, a, € A.
(i)) transitive, if (a;, a,) € R and (a,, a,) € R implies that (a,, a,)€ R, foralla, a,,
a, € A.
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RELATIONS AND FUNCTIONS 3

Definition 4 A relation R in a set A is said to be an equivalence relation if R is
reflexive, symmetric and transitive.

Example 2 Let T be the set of all triangles in a plane with R a relation in T given by
R={(T,, T, : T, is congruent to T,}. Show that R is an equivalence relation.

Solution R is reflexive, since every triangle is congruent to itself. Further,
(T,,T)e R=T, is congruent to T, = T, is congruent to T, = (T,, T) € R. Hence,
R is symmetric. Moreover, (T, T,), (T,, T,) € R =T, is congruent to T, and T, is
congruentto T, = T is congruent to T, = (T, T,) € R. Therefore, R is an equivalence
relation.

Example 3 Let L be the set of all lines in a plane and R be the relation in L defined as
R = {(L, L) : L, is perpendicular to L }. Show that R is symmetric but neither
reflexive nor transitive.

Solution R is not reflexive, as a line L, can not be perpendicular to itself, i.e., (L, L))

¢ R. R is symmetric as (L, L) € R L,

= L, is perpendicular to L,

= L, is perpendicular to L, L,

= (L,L)eR. L,
R is not transitive. Indeed, if L, is perpendicular to L, and Fig 1.1

L, is perpendicular to L., then L, can never be perpendicular to
L, In fact, L, is parallel to L, ie., (Ll, L2) € R, (Lz, L3) € R but (Ll, L3) ¢ R.

Example 4 Show that the relation R in the set {1, 2, 3} given by R = {(1, 1), (2, 2),
(3.3),(1,2), (2,3)} is reflexive but neither symmetric nor transitive.

Solution R is reflexive, since (1, 1), (2, 2) and (3, 3) lie in R. Also, R is not symmetric,
as (1,2) e Rbut (2, 1) ¢ R. Similarly, R is not transitive, as (1, 2) € Rand (2, 3) € R
but (1,3) ¢ R.
Example 5 Show that the relation R in the set Z of integers given by

R = {(a, b) : 2 divides a — b}
is an equivalence relation.
Solution R is reflexive, as 2 divides (a — @) for all a € Z. Further, if (a, b) € R, then
2 divides a — b. Therefore, 2 divides b — a. Hence, (b, a) € R, which shows that R is
symmetric. Similarly, if (a, b) € R and (b, ¢) € R, then a — b and b — ¢ are divisible by
2. Now,a—c=(a->b) + (b-c)iseven (Why?). So, (a — ¢) is divisible by 2. This
shows that R is transitive. Thus, R is an equivalence relation in Z.
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4 MATHEMATICS

In Example 5, note that all even integers are related to zero, as (0, £ 2), (0, £ 4)
etc., lie in R and no odd integer is related to 0, as (0, £ 1), (0, = 3) etc., do not lie in R.
Similarly, all odd integers are related to one and no even integer is related to one.
Therefore, the set E of all even integers and the set O of all odd integers are subsets of
Z satisfying following conditions:

(1) All elements of E are related to each other and all elements of O are related to
each other.

(i) No element of E is related to any element of O and vice-versa.
@iii) E and O are disjoint and Z = E U O.

The subset E is called the equivalence class containing zero and is denoted by
[0]. Similarly, O is the equivalence class containing 1 and is denoted by [1]. Note that
[0]1#[1], [0] =[2r] and [1] = [2r + 1], r € Z. Infact, what we have seen above is true
for an arbitrary equivalence relation R in a set X. Given an arbitrary equivalence
relation R in an arbitrary set X, R divides X into mutually disjoint subsets A, called
partitions or subdivisions of X satisfying:

(i) all elements of A_are related to each other, for all i.
(i) no element of A is related to any element of A}., [ #].
() VA =XandA NA =0,i#]

The subsets A, are called equivalence classes. The interesting part of the situation
is that we can go reverse also. For example, consider a subdivision of the set Z given
by three mutually disjoint subsets A , A, and A, whose union is Z with

A ={x€ Z:xisamultipleof 3} ={...,-6,-3,0, 3,6, ...}
A2 ={xe Z:x-lisamultipleof 3} ={...,-5,-2,1,4,7, ...}
A,={xe Z:x-2isamultipleof 3} ={...,-4,-1,2,5,8, ...}

Define a relation R in Z given by R = {(a, ) : 3 divides a — b}. Following the
arguments similar to those used in Example 5, we can show that R is an equivalence
relation. Also, A, coincides with the set of all integers in Z which are related to zero, A,
coincides with the set of all integers which are related to 1 and A, coincides with the

set of all integers in Z which are related to 2. Thus, A, =[0], A, =[1] and A, = [2].
In fact, A, = [3r], A, =[3r+ 1] and A, = [3r + 2], for all r € Z.

Example 6 Let R be the relation defined in the set A = {1, 2, 3, 4, 5, 6, 7} by
R = {(a, b) : both a and b are either odd or even}. Show that R is an equivalence
relation. Further, show that all the elements of the subset {1, 3, 5, 7} are related to each
other and all the elements of the subset {2, 4, 6} are related to each other, but no
element of the subset {1, 3, 5, 7} is related to any element of the subset {2, 4, 6}.
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RELATIONS AND FUNCTIONS 5

Solution Given any element a in A, both a and a must be either odd or even, so
that (a, a) € R. Further, (a, b)) € R = both a and b must be either odd or even
= (b, a) € R. Similarly, (a, b) € R and (b, c) € R = all elements a, b, ¢, must be
either even or odd simultaneously = (a, ¢) € R. Hence, R is an equivalence relation.
Further, all the elements of {1, 3, 5, 7} are related to each other, as all the elements
of this subset are odd. Similarly, all the elements of the subset {2, 4, 6} are related to
each other, as all of them are even. Also, no element of the subset {1, 3,5, 7} can be
related to any element of {2, 4, 6}, as elements of {1, 3, 5, 7} are odd, while elements
of {2, 4, 6} are even.

|[EXERCISE 1.1|

1. Determine whether each of the following relations are reflexive, symmetric and
transitive:

(1) Relation RinthesetA={1,2,3, ..., 13, 14} defined as
R={(xy):3x-y=0}
(ii)) Relation R in the set N of natural numbers defined as
R={(,y):y=x+5and x <4}
(i) Relation RinthesetA={1,2,3,4,5,6} as
R = {(x,y) : yis divisible by x}

(iv) Relation R in the set Z of all integers defined as
R ={(x,y) : x—yis an integer}
(v) Relation R in the set A of human beings in a town at a particular time given by
(@) R={(x,y) : xand y work at the same place}
(b) R={(x,y): xand y live in the same locality}
(¢) R={(x, y): x1is exactly 7 cm taller than y}
(d) R={(x,y) : xis wife of y}
(e) R={(x,y):xis father of y}
2. Show that the relation R in the set R of real numbers, defined as
R = {(a, b) : a £ b*} is neither reflexive nor symmetric nor transitive.
3. Check whether the relation R defined in the set {1, 2, 3,4, 5,6} as
R ={(a, b): b =a+ 1} is reflexive, symmetric or transitive.

4. Show that the relation R in R defined as R = {(a, b) : a £ b}, is reflexive and
transitive but not symmetric.

5. Check whether the relation R in Rdefined by R = {(a, b) : a < b*} is reflexive,
symmetric or transitive.
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Show that the relation R in the set {1, 2, 3} given by R = {(1, 2), (2, 1)} is
symmetric but neither reflexive nor transitive.

Show that the relation R in the set A of all the books in a library of a college,
given by R = {(x, ¥) : x and y have same number of pages} is an equivalence
relation.

Show that the relation R in the set A= {1, 2, 3,4, 5} given by

R = {(a, b) : la — bl is even}, is an equivalence relation. Show that all the
elements of {1, 3, 5} are related to each other and all the elements of {2, 4} are
related to each other. But no element of {1, 3, 5} is related to any element of {2, 4}.
Show that each of the relation R in the set A= {x e Z : 0 <x <12}, given by
1 R=1{(a, b):la—>blis amultiple of 4}
@) R={(a,b):a=0>b}
is an equivalence relation. Find the set of all elements related to 1 in each case.
Give an example of a relation. Which is
(1) Symmetric but neither reflexive nor transitive.
(i) Transitive but neither reflexive nor symmetric.
(i) Reflexive and symmetric but not transitive.
(iv) Reflexive and transitive but not symmetric.
(v) Symmetric and transitive but not reflexive.
Show that the relation R in the set A of points in a plane given by
R = {(P, Q) : distance of the point P from the origin is same as the distance of the
point Q from the origin}, is an equivalence relation. Further, show that the set of

all points related to a point P # (0, 0) is the circle passing through P with origin as
centre.

Show that the relation R defined in the set A of all triangles as R = {(T,, T)) : T,
is similar to T, }, is equivalence relation. Consider three right angle triangles T,
with sides 3, 4, 5, T, with sides 5, 12, 13 and T, with sides 6, 8, 10. Which
triangles among T, T, and T, are related?

Show that the relation R defined in the set A of all polygons as R = {(P, P)) :
P, and P, have same number of sides}, is an equivalence relation. What is the
set of all elements in A related to the right angle triangle T with sides 3,4 and 5?
Let L be the set of all lines in XY plane and R be the relation in L defined as
R={(L,,L):L, isparallel to L, }. Show that R is an equivalence relation. Find
the set of all lines related to the line y = 2x + 4.
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15. LetRbetherelationintheset {1,2,3,4} givenbyR={(1,2), (2,2), (1, 1), (4,4),
(1, 3), (3, 3), (3, 2)}. Choose the correct answer.

(A) Risreflexive and symmetric but not transitive.
(B) Ris reflexive and transitive but not symmetric.
(C) Rissymmetric and transitive but not reflexive.
(D) Ris an equivalence relation.

16. LetR be the relation in the set Ngiven by R = {(a, b) : a=b -2, b > 6}. Choose
the correct answer.

(A) 2,499 R @B) 3,8R (C) (6,8 eR (D) B, 7eR

1.3 Types of Functions

The notion of a function along with some special functions like identity function, constant
function, polynomial function, rational function, modulus function, signum function etc.
along with their graphs have been given in Class XI.

Addition, subtraction, multiplication and division of two functions have also been
studied. As the concept of function is of paramount importance in mathematics and
among other disciplines as well, we would like to extend our study about function from
where we finished earlier. In this section, we would like to study different types of
functions.

Consider the functions f, f,, f; and f, given by the following diagrams.

InFig 1.2, we observe that the images of distinct elements of X, under the function
Jf, are distinct, but the image of two distinct elements 1 and 2 of X, under f, is same,
namely b. Further, there are some elements like e and f'in X, which are not images of
any element of X under f,, while all elements of X, are images of some elements of X,
under f,. The above observations lead to the following definitions:
Definition 5 A function f: X — Y is defined to be one-one (or injective), if the images
of distinct elements of X under f are distinct, i.e., for every x, x, € X, f(x)) = f(x,)
implies x, = x,. Otherwise, fis called many-one.

The function f, and f,in Fig 1.2 (i) and (iv) are one-one and the function f, and f,
in Fig 1.2 (ii) and (iii) are many-one.
Definition 6 A function f: X — Y is said to be onto (or surjective), if every element
of Y is the image of some element of X under f; i.e., for every y € Y, there exists an
element x in X such that f(x) = y.

The function f, and f,in Fig 1.2 (iii), (iv) are onto and the function f, in Fig 1.2 (i) is
not onto as elements e, fin X are not the image of any element in X under f,.
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fi a
1
. [ »
2 /(/ ¢
3 d
e
4 f
X X, X
@ ‘ (i) X2
fi fi

N =
S

A W N =

o S (S}
w

Y Sl

4
X, (iii) X, X, (@iv) X
Fig 1.2 (i) to (iv)

Remark f:X —Y is onto if and only if Range of f=Y.
Definition 7 A function f: X — Y is said to be one-one and onto (or bijective), if fis
both one-one and onto.

The function f, in Fig 1.2 (iv) is one-one and onto.

Example 7 Let A be the set of all 50 students of Class X in a school. Let f: A — Nbe
function defined by f(x) = roll number of the student x. Show that f is one-one
but not onto.

Solution No two different students of the class can have same roll number. Therefore,
Jfmust be one-one. We can assume without any loss of generality that roll numbers of
students are from 1 to 50. This implies that 51 in Nis not roll number of any student of
the class, so that 51 can not be image of any element of X under f. Hence, fis not onto.

Example 8 Show that the function f: N — N, given by f(x) = 2x, is one-one but not
onto.

Solution The function f'is one-one, for f(x)) = f(x,) = 2x, = 2x, = x, = x,. Further,

fis not onto, as for 1 € N, there does not exist any x in Nsuch that f(x) = 2x = 1.
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RELATIONS AND FUNCTIONS 9

Example 9 Prove that the function f: R — R, given by f(x) = 2x, is one-one and onto.

Solution fis one-one, as f(x)) = f(x,) = 2x, = 2x, = x, = x,. Also, given any real

number y in R, there exists % in R such that f (%) =2. (%) =y. Hence, fis onto.

Y
A

y=f(x)=2x

X'€ 0 »X
v
Y!

Fig1.3

Example 10 Show that the function f: N— N, given by f(1) =f(2) =1 and f(x) =x -1,
for every x > 2, is onto but not one-one.

Solution fis not one-one, as f(1) =f(2) = 1. But fis onto, as givenany y e N,y # 1,
we can choose x as y + 1 such that f(y + 1) =y + 1 -1 =y. Also for 1 € N, we
have f(1) = 1.

Example 11 Show that the function f: R - R, Y
r' 3
defined as f(x) = x2, is neither one-one nor onto. 5
Sx)=x
Solution Since f(— 1) = 1 = f(1), fis not one-
one. Also, the element — 2 in the co-domain R is
not image of any element x in the domain R X”f -H=1 Sy = I‘X
(Why?). Therefore fis not onto. x=-1 [Ox=1
Example 12 Show that f: N — N, given by
x+1,if xis odd, v
f)= . ) Y )
x—1if xiseven The image of 1 and -1 under f is 1.
is both one-one and onto. Fig1.4
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10 MATHEMATICS

Solution Suppose f(x,) =f(x,). Note that if x, is odd and x, is even, then we will have
x,+1=x,-1,1e.,x,—x =2 which is impossible. Similarly, the possibility of x, being
even and x, being odd can also be ruled out, using the similar argument. Therefore,
both x, and x, must be either odd or even. Suppose both x, and x, are odd. Then
fx)=f(x,)=x +1=x,+1=x =x, Similarly, if both x, and x, are even, then also
fx)=f(x)=x -1=x,-1=x =x, Thus, fis one-one. Also, any odd number
2r+ 1 in the co-domain N is the image of 2r + 2 in the domain N and any even number
2r in the co-domain N is the image of 2r — 1 in the domain N. Thus, f'is onto.

Example 13 Show that an onto function f: {1, 2, 3} — {1, 2, 3} is always one-one.

Solution Suppose f'is not one-one. Then there exists two elements, say 1 and 2 in the
domain whose image in the co-domain is same. Also, the image of 3 under f can be
only one element. Therefore, the range set can have at the most two elements of the
co-domain {1, 2, 3}, showing that f is not onto, a contradiction. Hence, f must be one-one.

Example 14 Show that a one-one function f: {1, 2,3} — {1, 2, 3} must be onto.

Solution Since fis one-one, three elements of {1, 2, 3} must be taken to 3 different
elements of the co-domain {1, 2, 3} under f. Hence, f has to be onto.

Remark The results mentioned in Examples 13 and 14 are also true for an arbitrary
finite set X, i.e., a one-one function f: X — X is necessarily onto and an onto map
f: X — Xis necessarily one-one, for every finite set X. In contrast to this, Examples 8
and 10 show that for an infinite set, this may not be true. In fact, this is a characteristic
difference between a finite and an infinite set.

| EXERCISE 1.2|

1. Show that the function f: R, — R, defined by f(x) = — is one-one and onto,
x

where R_ is the set of all non-zero real numbers. Is the result true, if the domain
R, is replaced by N with co-domain being same as R ?
2. Check the injectivity and surjectivity of the following functions:
(i) f: N — N given by f(x) = x?
(i) f:Z — Z given by f(x) = x*
(i) f: R — R given by f(x) = x?
@iv) f: N — N given by f(x) = x°
(v) f:Z — 7Z given by f(x) = x°
3. Prove that the Greatest Integer Function f: R — R, given by f(x) = [x], is neither
one-one nor onto, where [x] denotes the greatest integer less than or equal to x.
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Show that the Modulus Function f: R — R, given by f(x) = | x|, is neither one-
one nor onto, where | x | is x, if x is positive or 0 and | x| is — x, if x is negative.

Show that the Signum Function f: R — R, given by

Lif x>0
f(x)=40,if x=0
Lif x<0

18 neither one-one nor onto.

LetA={1,2,3},B={4,5,6,7} and let f={(1,4), (2,5), (3,6)} be a function
from A to B. Show that fis one-one.

In each of the following cases, state whether the function is one-one, onto or
bijective. Justify your answer.

(1) f: R — R defined by f(x) =3 — 4x
(i) f: R — R defined by f(x) = 1 + x?

Let A and B be sets. Show that f: A x B — B x A such that f(a, b) = (b, a) is
bijective function.

+1
20 i nisodd

Let f: N — N be defined by f(n) = for all n € N.
5 ,if nis even

State whether the function f'is bijective. Justify your answer.
Let A=R - {3} and B=R - {1}. Consider the function f: A — B defined by

fx) = (%) . Is fone-one and onto? Justify your answer.

Let f: R — R be defined as fix) = x*. Choose the correct answer.

(A) fis one-one onto (B) fis many-one onto

(C) fis one-one but not onto (D) fis neither one-one nor onto.
Let f: R — R be defined as f(x) = 3x. Choose the correct answer.

(A) fis one-one onto (B) fis many-one onto

(C) fis one-one but not onto (D) fis neither one-one nor onto.

2019-20



12 MATHEMATICS

1.4 Composition of Functions and Invertible Function

In this section, we will study composition of functions and the inverse of a bijective
function. Consider the set A of all students, who appeared in Class X of a Board
Examination in 2006. Each student appearing in the Board Examination is assigned a
roll number by the Board which is written by the students in the answer script at the
time of examination. In order to have confidentiality, the Board arranges to deface the
roll numbers of students in the answer scripts and assigns a fake code number to each
roll number. Let B < N be the set of all roll numbers and C < N be the set of all code
numbers. This gives rise to two functions f: A— B and g : B — C given by f(a) = the
roll number assigned to the student a and g (b) = the code number assigned to the roll
number b. In this process each student is assigned a roll number through the function f
and each roll number is assigned a code number through the function g. Thus, by the
combination of these two functions, each student is eventually attached a code number.

This leads to the following definition:

Definition 8 Let f: A— B and g : B — C be two functions. Then the composition of
fand g, denoted by gof, is defined as the function gof: A — C given by

gof(x) =g(f(x), v x € A.

gof

Fig 1.5

Example 15 Let f: {2,3,4,5} > {3,4,5,9} and g: {3,4,5,9} —> {7, 11, 15} be
functions defined as f(2) = 3, f(3) =4, f(4) = f(5)=5and g(3) =g4) =7 and
g(5) = g() =11. Find gof.

Solution We have gof(2) = g(f(2)) = ¢(3) =7, gof 3) = g(f(3) =g =17,
gof(4) = g(f(4) =¢g(5) = 11 and gof(5) = g(5) = 11.

Example 16 Find gof and fog, if f: R — R and g : R — R are given by f(x) = cos x
and g (x) = 3x% Show that gof # fog.

Solution We have gof(x) = g(f(x)) = g(cos x) = 3 (cos x)* = 3 cos® x. Similarly,
fog(x) = f(g(x)) = f(3x*) = cos (3x?). Note that 3cos? x # cos 3x? for x = 0. Hence,
gof # fog.
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3x+4
S5x-17

7
Example 17 Show that if f: R—{g} - R—{%} is defined by f(x)=

and

Tx+4
5x-3

g:R- {%} —R —{%} is defined by g(x) =

,thenfog =1, and gof =1, where,

3

7
A=R- {g},B:R— {g} I, 0 =x, vxe A I,(x)=x, Vxe B are called identity

functions on sets A and B, respectively.

Solution We have

7((3x+4)J+

_ \6x-7) _ 21x+28+20x-28 4lx
5((3x+4)}_3 15x+20-15x+21 41
Gx-=7)

3x+4)

gOf(X)=g(5x_7

3((7x+4)j+

L 6x-3) 21x+12+20x-12  4lx

_5((7x+4)J_7 T 35x+420-35x+21 41
(5x-3)

7x+4)

Similarly, fog(x)=f ( P—

Thus, gof (x) = x, vx € B and fog(x) = x, vx € A, which implies that gof = I,
and fog = 1.

Example 18 Show thatif f: A— B and g : B — C are one-one, then gof : A — Cis
also one-one.

Solution Suppose gof (x,) = gof (x,)

= g (f(x)) =g(f(x,)
= f(x) =f(x,), as g is one-one
= X, =x,, as fis one-one

Hence, gof is one-one.

Example 19 Show thatif f: A— B and g : B — C are onto, then gof: A — C is
also onto.

Solution Given an arbitrary element z € C, there exists a pre-image y of z under g
such that g (y) = z, since g is onto. Further, for y € B, there exists an element x in A
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14 MATHEMATICS

with f(x) =y, since f'is onto. Therefore, gof (x) = g (f(x)) = g (y) = z, showing that gof
is onto.

Example 20 Consider functions f and g such that composite gofis defined and is one-
one. Are f and g both necessarily one-one.

Solution Consider f: {1, 2, 3,4} — {1, 2, 3,4, 5, 6} defined as f(x) = x, v x and
g:{1,2,3,4,5,6} > {1,2,3,4,5,6}asg(x)=x,forx=1,2,3,4and g (5) =g (6) =5.
Then, gof(x) = x v x, which shows that gof is one-one. But g is clearly not one-one.

Example 21 Are f and g both necessarily onto, if gof is onto?

Solution Consider f: {1,2,3,4} —> {1,2,3,4}and g: {1,2,3,4} — {1, 2,3} defined
asf()=1,f(2)=2, f3)=f4)=3,g(1)=1,¢(2)=2and g(3) =g (4) =3. It can be
seen that gofis onto but f'is not onto.

Remark 1t can be verified in general that gof is one-one implies that f is one-one.
Similarly, gofis onto implies that g is onto.

Now, we would like to have close look at the functions f and g described in the
beginning of this section in reference to a Board Examination. Each student appearing
in Class X Examination of the Board is assigned a roll number under the function fand
each roll number is assigned a code number under g. After the answer scripts are
examined, examiner enters the mark against each code number in a mark book and
submits to the office of the Board. The Board officials decode by assigning roll number
back to each code number through a process reverse to g and thus mark gets attached
to roll number rather than code number. Further, the process reverse to f assigns a roll
number to the student having that roll number. This helps in assigning mark to the
student scoring that mark. We observe that while composing f and g, to get gof, first f
and then g was applied, while in the reverse process of the composite gof, first the
reverse process of g is applied and then the reverse process of f.

Example 22 Let f: {1, 2, 3} — {a, b, ¢} be one-one and onto function given by
f(1)=a, f(2)=b and f(3) = c. Show that there exists a function g : {a, b, c} — {1,2,3}
such that gof = I, and fog =1, where, X = {1, 2,3} and Y = {q, D, c}.

Solution Consider g : {a, b,c} > {1,2,3} asg(a)=1,g(b)=2and g(c) =3. It is
easy to verify that the composite gof=1, is the identity function on X and the composite
Jfog =1, is the identity function on Y.

Remark The interesting fact is that the result mentioned in the above example is true
for an arbitrary one-one and onto function f: X — Y. Not only this, even the converse
is also true , i.e., if f: X — Y is a function such that there exists a function g : Y — X
such that gof =1, and fog = [, then f must be one-one and onto.

The above discussion, Example 22 and Remark lead to the following definition:
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Definition 9 A function f: X — Y is defined to be invertible, if there exists a function

g:Y — Xsuchthat gof=1, and fog =1,. The function g is called the inverse of f and
is denoted by f~'.

Thus, if f is invertible, then f must be one-one and onto and conversely, if fis
one-one and onto, then fmust be invertible. This fact significantly helps for proving a
function f to be invertible by showing that f is one-one and onto, specially when the
actual inverse of fis not to be determined.

Example 23 Let f: N — Y be a function defined as f(x) = 4x + 3, where,
Y ={ye N:y=4x+ 3 for some x € N}. Show that fis invertible. Find the inverse.

Solution Consider an arbitrary element y of Y. By the definition of Y, y = 4x + 3,

-3
for some x in the domain N. This shows that x= »=3)

. Define g : Y — N by

(y—3)

4x+3-3
g (n) === Now. gof(x) = g (f(x)) = g (4x + 3) = @x+3-3)

x and

(y_3)j=4(y_3)+3 =y—3+3=y. This shows that gof = I

4 4

and fog = 1,,, which implies that fis invertible and g is the inverse of f.

fog () =f(g () =f(

Example 24 Let Y = {n*: ne N} c N. Consider f: N — Y as f(n) = n>. Show that
fis invertible. Find the inverse of f.

Solution An arbitrary element y in Y is of the form »?, for some n € N. This

implies that n = \/§ . This gives a function g : Y — N, defined by g(y) = \/§ . Now,

2
gof(n) = g(?) = \Ju? = n and fog(y) = f(\y)=(/y) =». which shows that
gof = L, and fog = L. Hence, fis invertible with f~'= g.

Example 25 Let f': N — R be a function defined as f'(x) = 4x* + 12x + 15. Show that
f:N— S, where, S is the range of f; is invertible. Find the inverse of f.

Solution Let y be an arbitrary element of range f. Then y = 4x? + 12x + 15, for some

(Vy=6)-3)

x in N, which implies that y = (2x + 3)* + 6. This gives x = 5

,asy>6.
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Jy—6)-3
Let us define g: S > N by g(y) = ((y—z))
Now gof(x) =g(f(x)) = g(4x*+ 12x + 15) = g((2x + 3)* + 6)
_(Va37v676)-3) ari3-3)
2 2 F

((5e))) (2l y-6>—s)+3f+6

and fog ) = f ( 5

= ((\/ﬂ)—3+3))2+6=( v_6) +6=y-6+6=y.

Hence, gof =1 and fog =I,. This implies that fis invertible with f ' = g.

Example 26 Consider f: N - N, g : N - N and 4 : N — R defined as f(x) = 2x,
g(y)=3y+4and h(z) =sin z, v x, y and z in N. Show that ho(gof) = (hog) of.

Solution We have
ho(gof) (x) = h(gof (x)) = h(g(f(x))) = h(g(2x))

=h(3(2x) + 4) = h(6x + 4) = sin (bx + 4) V xeN.
Also,  ((hog)of) (x) = (hog) (f(x)) = (hog) (2x) = h(g(2x))

=h(32x) +4)=h(6x +4) =sin (6x +4), vx e N.
This shows that ho(gof) = (hog) of.
This result is true in general situation as well.
Theorem 1 If f: X > Y,g:Y —> Zand h: Z — S are functions, then

ho(gof) = (hog)of.

We have
ho(gof) (x) = h(gof (x)) = h(g(f(x))), v xin X
and (hog) of (x) = hog (f (x)) = h(g(f(x))), v x in X.
Hence, ho(gof) = (hog)of.

Example 27 Consider f: {1,2,3} — {a, b, c} and g : {a, b, c} — {apple, ball, cat}
defined as f(1) = a, f(2) = b, f(3) = ¢, g(a) = apple, g(b) = ball and g(c) = cat.
Show that f, g and gof are invertible. Find out f !, ¢! and (gof)™' and show that
(gof) ' =f"og .
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Solution Note that by definition, f and g are bijective functions. Let
f{a, b, c} > (1, 2,3} and g': {apple, ball, cat} — {a, b, ¢} be defined as
fHat=1f"b}=2, f{c} =3, g"'{apple} =a, g~'{ball} =band g'{cat} =c.
It is easy to verify that f'of = 1{1,2,3},]‘0]“l =L, glog = I.,and go g'=1,
where, D = {apple, ball, cat}. Now, gof: {1, 2, 3} — {apple, ball, cat} is given by
gof(1) = apple, gof(2) = ball, gof(3) = cat. We can define
(gof)" : {apple, ball, cat} — {1, 2, 3} by (gof)" (apple) = 1,(gop)™" (ball) =2 and
(gof)! (cat) = 3. It is easy to see that (gof)™" o (gof) = I, ,,and
(gof) o (gof)" = 1. Thus, we have seen that f, ¢ and gof are invertible.
Now, f~og™' (apple)=f (g '(apple)) = f"(a) = 1 = (gof)"' (apple)
flog™ (ball) = f (g '(ball)) = f'(b) = 2 = (gof)™* (ball) and
fog™ (cat) = f (g '(cat)) = f~'(c) = 3 = (gof) (cat).
Hence (gof)y ! =f Tog™.
The above result is true in general situation also.
Theorem 2 Letf: X — Y and g : Y — Z be two invertible functions. Then gof is also
invertible with (gof)™! = f~'og™'.
To show that gof is invertible with (gof)™' = f'og™, it is enough to show that
(f'ogo(gof) = I and (gof)o(f'og™) =1L,
Now, (flogHo(gof) = ((flog™) og) of, by Theorem 1
= (f'o(g'0g)) of, by Theorem 1
= (f"'ol)) of, by definition of g
=1.
X

Similarly, it can be shown that (gof )o(f ' og ") =1L,

Example 28 Let S = {1, 2, 3}. Determine whether the functions f: S — S defined as
below have inverses. Find /', if it exists.

(@ f={1,1),(@2,2),3,3)}
() f=1{(1,2),2, 1,G, D}

(© f=1{(1,3),3,2), 2, D}

Solution
(a) Itiseasy to see that f is one-one and onto, so that f is invertible with the inverse
froffgivenby ' ={(1, 1), (2,2),3,3)} =1.
(b) Since f(2) =f(3) =1, f is not one-one, so that f is not invertible.
(c) Itiseasy toseethat f is one-one and onto, so that f is invertible with

F=1{G. D, (2,3), 1,2}
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|EXERCISE 1.3|

Letf:{1,3,4} > {1,2,5}and g: {1,2,5} — {1, 3} be given by
f=1{(1,2),(3,5), 4, 1)} and g = {(1, 3), (2, 3), (5, 1)}. Write down gof.
Let f, g and h be functions from R to R. Show that
(f + g)oh = foh + goh
(f . g)oh = (foh) . (goh)
Find gof and fog, if
1) f(x)=Ilxland g(x) =15x -2 |

1
(i) f(x)=8x* and g(x) = x>.

(4x+3) 2 2 .
If f(x) = , X#—, show that fof(x) = x, for all x;tg. What is the

(6x—4) 3
inverse of 7
State with reason whether following functions have inverse
@ f:{1,2,3,4} = {10} with
f=1{(1,10), (2, 10), (3, 10), (4, 10)}
(i) g:{5,6,7,8} = {1,2,3,4} with
8§=1{(5,4),(6,3),(7.4),(8,2)}
@) h:{2,3,4,5} = {7,9,11, 13} with
h=1{(2,7),(3,9),(4,11),(5,13)}

Show thatf: [-1, 1] = R, given by f(x) = is one-one. Find the inverse

(x+2)
of the function f: [-1, 1] — Range f.
Hint: Fory € R = f in [-1, 1], 2y
(Hint: Fory € Range f, y=f(x) = P orsome xin [-1, 1],1.e.,,x = (1—y))

Consider f: R — R given by f(x) = 4x + 3. Show that fis invertible. Find the
inverse of f.

Consider f: R, — [4, =) given by f(x) = x* + 4. Show that fis invertible with the
inverse f~'of fgiven by f~'(y) = /y—4, where R _is the set of all non-negative

real numbers.
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9. Considerf: R, — [-35, o) given by f(x) = 9x* + 6x— 5. Show that fis invertible

10. Letf: X — Y be an invertible function. Show that f has unique inverse.
(Hint: suppose g, and g, are two inverses of f. Then for all y € Y,

Jfog,(») = 1,(y) = fog,(y). Use one-one ness of f).
11. Considerf: {1, 2,3} — {a, b, c} given by f(1) =a, f(2) = b and f(3) = c. Find
f~! and show that (f )= f.
12. Letf: X — Y be an invertible function. Show that the inverse of f ! is f, i.e.,
FH'=r
1

13. If f: R — R be given by f(x) = (3—x3)5, then fof (x) is

(A) x% (B) x* ©) x D) B -x).

4 4
14. Letf:R- {_E} — R be a function defined as f(x) = 3—_7_4 . The inverse of
X

4
fis the map g : Range f > R - {_E} given by

__ 3 __4y
(A) g(y)—3_4y ®) &) 13y
__ 4y __ 3y
(©) g(y)—3_4y D) &) 13y

1.5 Binary Operations

Right from the school days, you must have come across four fundamental operations
namely addition, subtraction, multiplication and division. The main feature of these
operations is that given any two numbers a and b, we associate another number a + b

a
ora—borabor —,b#0.Itis to be noted that only two numbers can be added or

b
multiplied at a time. When we need to add three numbers, we first add two numbers
and the result is then added to the third number. Thus, addition, multiplication, subtraction
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and division are examples of binary operation, as ‘binary’ means two. If we want to
have a general definition which can cover all these four operations, then the set of
numbers is to be replaced by an arbitrary set X and then general binary operation is
nothing but association of any pair of elements a, b from X to another element of X.
This gives rise to a general definition as follows:

Definition 10 A binary operation * on a set A is a function * : A x A — A. We denote
* (a, b) by a * b.

Example 29 Show that addition, subtraction and multiplication are binary operations
on R, but division is not a binary operation on R. Further, show that division is a binary
operation on the set R, of nonzero real numbers.

Solution +:R xR — Ris given by
(a,b) >a+b

—:R xR — Ris given by
(a,b) >a->b
x : Rx R — Ris given by
(a, b) = ab
Since ‘+’, ‘-’ and ‘X’ are functions, they are binary operations on R.

But+: Rx R — R, given by (a, b) = 4 ,is not a function and hence not a binary

a
operation, as for b = 0, ; is not defined.

However, +: R, x R, = R, given by (a, b) — % is a function and hence a

binary operation on R.

Example 30 Show that subtraction and division are not binary operations on N.
Solution —: Nx N — N, given by (a, b) = a— b, is not binary operation, as the image
of (3,5) under ‘—"is3—5=—2¢ N. Similarly, + : Nx N — N, given by (a, b)) > a+b
is not a binary operation, as the image of (3, 5) under +is 3 +5 = 5 ¢ N.

Example 31 Show that * : R x R — R given by (a, b) = a + 4b* is a binary
operation.

Solution Since * carries each pair (a, b) to a unique element a + 4b* in R, * is a binary
operation on R.
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Example 32 Let P be the set of all subsets of a given set X. Show that U: P xP — P
given by (A, B) > Au B and n: Px P — P given by (A, B) - A n B are binary
operations on the set P.

Solution Since union operation U carries each pair (A, B) in P x P to a unique element
AU B inP, Uis binary operation on P. Similarly, the intersection operation M carries
each pair (A, B) in P x P to a unique element A M B in P, N is a binary operation on P.

Example 33 Show that the v : R x R — R given by (a, b)) - max {a, b} and the
A R xR — R given by (a, b) = min {a, b} are binary operations.
Solution Since Vv carries each pair (a, b) in R X R to a unique element namely

maximum of @ and b lying in R, v is a binary operation. Using the similar argument,
one can say that A is also a binary operation.

Remark v (4, 7)=T7, v@&, -T)=4, n4,7)=4and A4, -7)=-17.

When number of elements in a set A is small, we can express a binary operation * on
the set A through a table called the operation table for the operation *. For example
consider A= {1, 2, 3}. Then, the operation v on Adefined in Example 33 can be expressed
by the following operation table (Table 1.1) . Here, v (1,3)=3, v (2,3)=3, v (1,2)=2.

Table 1.1

3
3
3

A%
1
2
3

W N = | -
W N NN

3

Here, we are having 3 rows and 3 columns in the operation table with (i, j) the
entry of the table being maximum of i and j™ elements of the set A. This can be
generalised for general operation * : Ax A - A. If A= {a, a, ..., a }. Then the
operation table will be having n rows and n columns with (i, /)" entry being a. * a.
Conversely, given any operation table having n rows and n columns with each entry
being an element of A = {al, Ayy oy an}, we can define a binary operation * : AX A — A
given by a, * a,= the entry in the i row and j™ column of the operation table.

One may note that 3 and 4 can be added in any order and the result is same, i.e.,
3 +4 =4+ 3, but subtraction of 3 and 4 in different order give different results, i.e.,
3 -4 #4 — 3. Similarly, in case of multiplication of 3 and 4, order is immaterial, but
division of 3 and 4 in different order give different results. Thus, addition and
multiplication of 3 and 4 are meaningful, but subtraction and division of 3 and 4 are
meaningless. For subtraction and division we have to write ‘subtract 3 from 4°, ‘subtract
4 from 3’, ‘divide 3 by 4’ or ‘divide 4 by 3’.
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This leads to the following definition:

Definition 11 A binary operation * on the set X is called commutative, if a * b =b * a,
for every a, b € X.

Example 34 Show that + : Rx R — R and x : R x R — R are commutative binary
operations, but —: Rx R — Rand +: R, x R — R are not commutative.

Solution Sincea + b=b+aandaxb=>bxa, ya, b € R, ‘4> and ‘X’ are
commutative binary operation. However, ‘-’ is not commutative, since 3 —4 # 4 — 3.
Similarly, 3 +4 # 4 + 3 shows that ‘=’ is not commutative.

Example 35 Show that * : R x R — R defined by a * b = a + 2b is not commutative.

Solution Since 3 *4 =3+ 8 =11and 4 * 3 =4 + 6 = 10, showing that the operation *
is not commutative.

If we want to associate three elements of a set X through a binary operation on X,
we encounter a natural problem. The expression a * b * ¢ may be interpreted as
(a * b) * cora* (b* c)and these two expressions need not be same. For example,
(8—=5)—2# 8 —(5-2). Therefore, association of three numbers 8, 5 and 3 through
the binary operation ‘subtraction’ is meaningless, unless bracket is used. But in case
of addition, 8 + 5 + 2 has the same value whether we look atitas (8 + 5) + 2 or as
8 + (5 + 2). Thus, association of 3 or even more than 3 numbers through addition is
meaningful without using bracket. This leads to the following:

Definition 12 A binary operation * : A x A — A is said to be associative if
(axb)y*c=ax*(b=*c), va, b, c, € A.

Example 36 Show that addition and multiplication are associative binary operation on
R. But subtraction is not associative on R. Division is not associative on R .

Solution Addition and multiplication are associative, since (a +b) + c=a+ (b + ¢) and
(axb)yxc=ax((bxc)VY a, b, c e R. However, subtraction and division are not
associative, as (8§ = 5)-3#8-(5-3)and (8 +5)+3#8+(5+3).

Example 37 Show that * : R x R — R given by a * b — a + 2b is not associative.

Solution The operation * is not associative, since
8*5)*3=(8+10)*3=(8+10)+6=24,

while 8% (5*%3)=8*(5+6)=8*11=8+22=30.

Remark Associative property of a binary operation is very important in the sense that
with this property of a binary operation, we can write a, * a, * ... ¥ a_ which is not
ambiguous. But in absence of this property, the expression a, * a,* ... * a_is ambiguous
unless brackets are used. Recall that in the earlier classes brackets were used whenever
subtraction or division operations or more than one operation occurred.
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For the binary operation ‘+’ on R, the interesting feature of the number zero is that
a+0=a=0+a,ie., any number remains unaltered by adding zero. But in case of
multiplication, the number 1 plays thisrole,asax 1 =a=1xa, V ainR. This leads
to the following definition:

Definition 13 Given a binary operation * : A x A — A, an element e € A, if it exists,
is called identity for the operation *,ifa *e=a=e *a, ¥V ae A.

Example 38 Show that zero is the identity for addition on R and 1 is the identity for
multiplication on R. But there is no identity element for the operations

-:RxR—->Rand+:R xR — R.

Solutiona+0=0+a=aandax1=a=1xa, vae Rimplies that 0 and 1 are
identity elements for the operations ‘+ and ‘x’ respectively. Further, there is no element
ein R witha —e = e —a, \y a. Similarly, we can not find any element e in R_ such that
a+e=e+a, Vain R . Hence, ‘-’ and ‘%’ do not have identity element.

Remark Zero is identity for the addition operation on R but it is not identity for the
addition operation on N, as 0 ¢ N. In fact the addition operation on N does not have
any identity.

One further notices that for the addition operation + : R x R — R, given any
a € R, there exists — a in R such that a + (— a) = 0 (identity for ‘+’) = (— a) + a.

Similarly, for the multiplication operation on R, given any a # 0 in R, we can choose —
a

1 1
in Rsuch that a x — = 1(identity for ‘x’) = —x a. This leads to the following definition:
a a

Definition 14 Given a binary operation * : A x A — A with the identity element e in A,
an element a € A is said to be invertible with respect to the operation *, if there exists
an element b in A such that a * b = e = b * a and b is called the inverse of a and is
denoted by a.

Example 39 Show that — a is the inverse of a for the addition operation ‘+’ on R and
— is the inverse of a # 0 for the multiplication operation ‘x’ on R.
a

Solution Asa+ (—a)=a—a=0and (—a) + a=0, —a is the inverse of a for addition.

Q |~

1
Similarly, fora#0,a x —=1= —xa implies that — is the inverse of a for multiplication.
a a
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Example 40 Show that — a is not the inverse of a € N for the addition operation + on
1. , o .

N and —is not the inverse of a € N for multiplication operation x on N, for a # 1.
a

Solution Since — a ¢ N, — a can not be inverse of a for addition operation on N,
although — a satisfiesa + (—a) =0=(—a) + a.

1
Similarly, fora# 1 in N, — ¢ N, which implies that other than 1 no element of N
a

has inverse for multiplication operation on N.

Examples 34, 36, 38 and 39 show that addition on R is a commutative and associative
binary operation with O as the identity element and — a as the inverse of ¢ in R V a.

EXERCISE14

1. Determine whether or not each of the definition of * given below gives a binary
operation. In the event that * is not a binary operation, give justification for this.

(1) On Z*, define * bya*b=a—->b
(i) On Z*, define * by a * b = ab
(iii) On R, define * by a * b = ab?
(iv) On Z*, define * by a * b =la — bl
(v) On Z*, define * by a *b=a

2. For each operation * defined below, determine whether * is binary, commutative
or associative.

(1) On Z, definea*b=a->b
(i) On Q, definea * b =ab + 1

b
(i) On Q, define a * b = %

(iv) On Z*, define a * b = 2%
(v) On Z*, define a * b = a’

a
i R - {- 1}, defi *h= ——
(vi) On {-1}, define a * b bl

3. Consider the binary operation A on the set {1, 2, 3, 4, 5} defined by
a A b=min {a, b}. Write the operation table of the operation A .
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4. Consider a binary operation * on the set {1, 2, 3, 4, 5} given by the following
multiplication table (Table 1.2).
(1) Compute (2 * 3) * 4 and 2 * (3 * 4)
(i1) Is * commutative?
(i) Compute (2 * 3) * (4 * 5).
(Hint: use the following table)

Table 1.2
% 1 2 3 4 5
1 1 1 1 1 1
2 1 2 1 2 1
3 1 1 3 1 1
4 1 2 1 4 1
5 1 1 1 1 5

5. Let *” be the binary operation on the set {1, 2, 3, 4, 5} defined by
a * b =H.C.F of a and b. Is the operation *” same as the operation * defined
in Exercise 4 above? Justify your answer.

6. Let * be the binary operation on N given by a * b = L.C.M. of a and b. Find
1 57, 20* 16 (ii) Is * commutative?
(i) Is * associative? (iv) Find the identity of * in N
(v) Which elements of N are invertible for the operation *?

7. Is * defined on the set {1, 2, 3, 4, 5} by a * b = L.C.M. of a and b a binary
operation? Justify your answer.

8. Let * be the binary operation on N defined by a * b = H.C.F. of a and b.
Is * commutative? Is * associative? Does there exist identity for this binary
operation on N?

9. Let * be a binary operation on the set Q of rational numbers as follows:

) ax*b=a->b @) a*b=a>+b
(i) a* b=a+ ab (iv) a * b =(a - b)?
(v)a*b=% i) a * b = ab?

Find which of the binary operations are commutative and which are associative.
10. Find which of the operations given above has identity.
11. Let A=N x N and * be the binary operation on A defined by
(a,b)*(c,d)=(a+c,b+d)
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Show that * is commutative and associative. Find the identity element for * on
A, if any.
12. State whether the following statements are true or false. Justify.
(1) For an arbitrary binary operation * onaset N,a *a=a Va € N.
() If * is a commutative binary operation on N, then a * (b * ¢) = (c * b) * a
13. Consider a binary operation * on N defined as a * b = a@* + b*>. Choose the
correct answer.
(A) Is * both associative and commutative?
(B) Is * commutative but not associative?
(C) Is * associative but not commutative?

(D) Is * neither commutative nor associative?

Miscellaneous Examples

Example 41 If R and R, are equivalence relations in a set A, show that R, N R is
also an equivalence relation.

Solution Since R and R, are equivalence relations, (¢, a) € R, and (a,a) € R, Va € A.
This implies that (a, @) € R, R,, Va, showing R, R, is reflexive. Further,
(a,b)e RNR, = (a,b)e R, and (a,b) € R, = (b,a) € R, and (b,a) € R, =
(b, a) € R, NR, hence, R1 N R2 is symmetric. Similarly, (a, b) € R, N R, and
(b,c)e RNR, = (a,¢) € R, and (g, ¢) € R, = (a, ¢c) € R, " R,. This shows that
R, MR, is transitive. Thus, R, M R, is an equivalence relation.

Example 42 Let R be a relation on the set A of ordered pairs of positive integers
defined by (x, y) R (u, v) if and only if xv = yu. Show that R is an equivalence relation.

Solution Clearly, (x, y) R (x, y), v (x, y) € A, since xy = yx. This shows that R is
reflexive. Further, (x, y) R (1, v) = xv = yu = uy = vx and hence (u, v) R (x, y). This
shows that R is symmetric. Similarly, (x, y) R (#, v) and (4, v) R (a, b) = xv = yu and

b a
ub =va = xvﬁzyuﬁ: XV;=)’M; = xb = ya and hence (x, y) R (a, b). Thus, R
u u

is transitive. Thus, R is an equivalence relation.

Example 43 Let X = {1, 2, 3,4, 5,6, 7, 8, 9}. Let R, be a relation in X given
by R, = {(x, y) : x — y is divisible by 3} and R, be another relation on X given by
R, ={(, »:{x,y} < {L,4,7}} or {x,y} < {2,5,8} or {x,y} < {3, 6,9}}. Show that
R, =R..

1 2
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Solution Note that the characteristic of sets {1, 4, 7}, {2, 5, 8} and {3, 6, 9} is
that difference between any two elements of these sets is a multiple of 3. Therefore,
(x,y) € R, = x—yis amultiple of 3 = {x, y} < {1,4, 7} or {x, y} < {2, 5, 8}
or {x,y} < {3,6,9} = (x,y) € R,. Hence, R, c R,. Similarly, {x, y} € R, = {x, y}
c {1,4,7}or {x, y} < {2,5, 8} or {x,y} {3, 6,9} = x—yis divisible by
3 = {x, y} € R,. This shows that R, © R,. Hence, R, = R,.

Example 44 Let f: X — Y be a function. Define a relation R in X given by
R = {(a, b): fla) = fib)}. Examine whether R is an equivalence relation or not.

Solution For every a € X, (a, a) € R, since f(a) = f(a), showing that R is reflexive.
Similarly, (a, b) € R = f(a) = f(b) = f(b) = f(a) = (b, a) € R. Therefore, R is
symmetric. Further, (a, b) € R and (b, ¢) € R = f(a) =f(b) and f(b) = f(c) = f(a)
= f(c) = (a, ¢) € R, which implies that R is transitive. Hence, R is an equivalence
relation.

Example 45 Determine which of the following binary operations on the set R are
associative and which are commutative.

(a+b)
2

(@) a*b=1V a,be R (b) axb= Vv a,be R

Solution
(a) Clearly, by definition a * b = b * a = 1, ya, b € R. Also
(ax*by*c=(=*c)y=landa*(b*c)=a*(1)=1, v a, b, c € R. Hence
R is both associative and commutative.

a+b b+a ) )
b) axb= > = , = b * a, shows that * is commutative. Further,
a+b
(a*b)*c=( > )*c.
a+b ‘e
3 2 _a+b+2c
B 2 4
b+c
But a*(b*c)=a*( 2)
Lote
“ 2 2a+b+c a+b+2c .
= = # in general.
2 4 4

Hence, * is not associative.
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Example 46 Find the number of all one-one functions from set A = {1, 2, 3} to itself.

Solution One-one function from {1, 2, 3} to itself is simply a permutation on three
symbols 1, 2, 3. Therefore, total number of one-one maps from {1, 2, 3} to itself is
same as total number of permutations on three symbols 1, 2, 3 which is 3! = 6.

Example 47 Let A= {1, 2, 3}. Then show that the number of relations containing (1, 2)
and (2, 3) which are reflexive and transitive but not symmetric is three.

Solution The smallest relation R, containing (1, 2) and (2, 3) which is reflexive and
transitive but not symmetric is {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)}. Now, if we add
the pair (2, 1) to R, to get R, then the relation R, will be reflexive, transitive but not
symmetric. Similarly, we can obtain R, by adding (3, 2) to R to get the desired relation.
However, we can not add two pairs (2, 1), (3, 2) or single pair (3, 1) to R, at a time, as
by doing so, we will be forced to add the remaining pair in order to maintain transitivity
and in the process, the relation will become symmetric also which is not required. Thus,
the total number of desired relations is three.

Example 48 Show that the number of equivalence relation in the set {1, 2, 3} containing
(1,2) and (2, 1) is two.

Solution The smallest equivalence relation R, containing (1, 2) and (2, 1) is {(1, 1),
(2,2),(3,3),(1,2), (2, 1)}. Now we are left with only 4 pairs namely (2, 3), (3, 2),
(1, 3) and (3, 1). If we add any one, say (2, 3) to R, then for symmetry we must add
(3, 2) also and now for transitivity we are forced to add (1, 3) and (3, 1). Thus, the only
equivalence relation bigger than R is the universal relation. This shows that the total
number of equivalence relations containing (1, 2) and (2, 1) is two.

Example 49 Show that the number of binary operations on {1, 2} having 1 as identity
and having 2 as the inverse of 2 is exactly one.

Solution A binary operation * on {1, 2} is a function from {1,2} x {1,2} to {1, 2}, i.e.,
a function from {(1, 1), (1, 2), (2, 1), (2, 2)} — {1, 2}. Since 1 is the identity for the
desired binary operation *, * (1, 1) =1, * (1, 2) =2, * (2, 1) = 2 and the only choice
left is for the pair (2, 2). Since 2 is the inverse of 2, i.e., * (2, 2) must be equal to 1. Thus,
the number of desired binary operation is only one.

Example 50 Consider the identity function I, : N — N defined as [ (x) =x Vx e N.
Show that although I is onto but [ + I : N — N defined as

(Iy + L) () =L (0) + I (x) = x + x = 2x is not onto.
Solution Clearly I is onto. But I + I is not onto, as we can find an element 3

in the co-domain N such that there does not exist any x in the domain N with
(I + L) () =2x=3.
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Example 51 Consider a function f : [0’§}_>R given by f(x) = sin x and

g: [O,E}_)R given by g(x) = cos x. Show that f and g are one-one, but f + g is not
2
one-one.

Solution Since for any two distinct elements x, and x, in [O,E} , sin x, # sin x, and

COs x, # COs x,, both f'and g must be one-one. But (f+ g) (0) = sin 0 + cos 0 = 1 and

T . T T .
Ff+ 2 (E) = s1n5+ COSE =1. Therefore, f + g is not one-one.

Miscellaneous Exercise on Chapter 1

1. Letf: R — Rbe defined as f(x) = 10x + 7. Find the function g : R — R such
that go f=fog=1,.

2. Letf: W — W be defined as f(n) =n—1,ifnisodd and f(n) =n + 1, if n is
even. Show that fis invertible. Find the inverse of f. Here, W is the set of all
whole numbers.

3. Iff: R — Ris defined by f(x) = x*> — 3x + 2, find f (f(x)).

4. Show that the function f: R — {x€ R:—-1<x< 1} defined by f(x)=l+L||,
X

x € Ris one one and onto function.

Show that the function f: R — R given by f(x) = x* is injective.

Give examples of two functions f: N — Z and g : Z — Z such that g o fis
injective but g is not injective.

(Hint : Consider f(x) = x and g (x) = IxI).

7. Give examples of two functions f: N — N and g : N — N such that g o fis onto
but f'is not onto.

x—=1if x>1

(Hint : Consider f(x) =x + 1 and g(x)= .
1 if x=1

8. Given a non empty set X, consider P(X) which is the set of all subsets of X.
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10.
11.

12.

13.

14.

15.

16.

17.

MATHEMATICS

Define the relation R in P(X) as follows:
For subsets A, B in P(X), ARB if and only if A = B. Is R an equivalence relation
on P(X)? Justify your answer.
Given a non-empty set X, consider the binary operation * : P(X) x P(X) — P(X)
given by A* B=A N B VA, B in P(X), where P(X) is the power set of X.
Show that X is the identity element for this operation and X is the only invertible
element in P(X) with respect to the operation *.
Find the number of all onto functions from the set {1, 2, 3, ..., n} to itself.
LetS={a,b,c} and T = {1, 2, 3}. Find F! of the following functions F from S
to T, if it exists.

1) F={(a,3),(,2),(c, D} 1) F={(a,2), (b, 1), (c, 1)}
Consider the binary operations * : RxX R — R and o : R x R — R defined as
a*b=la-blanda o b =a, Va, b e R. Show that * is commutative but not
associative, o 18 associative but not commutative. Further, show that V a, b, c € R,
a*((boc)=(a*b)o(a*c). [Ifitis so, we say that the operation * distributes
over the operation o]. Does o distribute over *? Justify your answer.
Given a non-empty set X, let * : P(X) x P(X) — P(X) be defined as
A*B=(A-B)u B -A), vA, B e P(X). Show that the empty set ¢ is the
identity for the operation * and all the elements A of P(X) are invertible with
A'=A. Hint: A= u@-A)=Aand (A-A)UA-A)=A*A=0).
Define a binary operation * on the set {0, 1, 2, 3,4, 5} as

a+b, ifa+b<6
a*xb=
a+b—-6 ifa+b=>6

Show that zero is the identity for this operation and each element a # 0 of the set
is invertible with 6 — a being the inverse of a.

LetA={-1,0,1,2},B={-4,-2,0,2} and f, g : A — B be functions defined

1
by f(x) = x> = x, x € A and g(x)=2 X—E‘—L x € A. Are f and g equal?

Justify your answer. (Hint: One may note that two functions f: A — B and
g : A — Bsuch that f(a) = g(a) va € A, are called equal functions).

LetA={1,2,3}. Then number of relations containing (1, 2) and (1, 3) which are
reflexive and symmetric but not transitive is

(A) 1 B) 2 © 3 (D) 4
Let A= {1, 2, 3}. Then number of equivalence relations containing (1, 2) is
(A) 1 B) 2 © 3 (D) 4
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Let f: R — R be the Signum Function defined as

1, x>0
f(x)=40, x=0
-1, x<0
and g : R — R be the Greatest Integer Function given by g (x) = [x], where [x] is
greatest integer less than or equal to x. Then, does fog and gof coincide in (0, 1]?

Number of binary operations on the set {a, b} are
(A) 10 B) 16 ©) 20 D) 8

Summary

In this chapter, we studied different types of relations and equivalence relation,
composition of functions, invertible functions and binary operations. The main features
of this chapter are as follows:

L 2R R 2R 2R 2

*

*

Empty relation is the relation R in X given by R =¢ c X x X.

Universal relation is the relation R in X given by R = X x X.

Reflexive relation R in X is a relation with (a, a) € R va € X.
Symmetric relation R in X is a relation satisfying (a, b) € R implies (b, a) € R.
Transitive relation R in X is a relation satisfying (a, b) € R and (b, ¢) € R
implies that (a, ¢) € R.

Equivalence relation R in X is a relation which is reflexive, symmetric and
transitive.

Equivalence class [a] containing a € X for an equivalence relation R in X is
the subset of X containing all elements b related to a.

A function f: X — Y is one-one (or injective) if

Jx)=fx)=>x=x, V x,x,€ X.

A function f: X = Y is onto (or surjective) if given any y € Y, 3 x € X such
that f(x) = y.

A function f: X — Y is one-one and onto (or bijective), if fis both one-one
and onto.

The composition of functions f: A — B and g : B — C is the function
gof: A — C given by gof(x) = g(f(x))V x € A.

A function f': X — Y is invertible if 3 g : Y — X such that gof = I, and
fog=1,.

A function f: X — Y is invertible if and only if fis one-one and onto.

2019-20



32 MATHEMATICS

€ Given a finite set X, a function f: X — X is one-one (respectively onto) if and
only if fis onto (respectively one-one). This is the characteristic property of a
finite set. This is not true for infinite set

@ A binary operation * on a set A is a function * from A x A to A.

¢ Anelement e € X is the identity element for binary operation * : X x X — X,
ifaxe=a=e*a Vae X.

@ An element a € X is invertible for binary operation * : X x X — X, if

there exists b € X such that a * b = e = b * a where, e is the identity for the
binary operation *. The element b is called inverse of a and is denoted by a'.

@ An operation * on X is commutative if a * b = b * a v a, b in X.
@ An operation * on X is associative if (a * b) * c=a * (b * ¢)vy a, b, ¢ in X.

Historical Note

The concept of function has evolved over a long period of time starting from
R. Descartes (1596-1650), who used the word ‘function’ in his manuscript
“Geometrie” in 1637 to mean some positive integral power x" of a variable x
while studying geometrical curves like hyperbola, parabola and ellipse. James
Gregory (1636-1675) in his work “ Vera Circuli et Hyperbolae Quadratura”
(1667) considered function as a quantity obtained from other quantities by
successive use of algebraic operations or by any other operations. Later G. W.
Leibnitz (1646-1716) in his manuscript “Methodus tangentium inversa, seu de
functionibus” written in 1673 used the word “function’ to mean a quantity varying
from point to point on a curve such as the coordinates of a point on the curve, the
slope of the curve, the tangent and the normal to the curve at a point. However,
in his manuscript “Historia” (1714), Leibnitz used the word ‘function’ to mean
quantities that depend on a variable. He was the first to use the phrase ‘function
of x’. John Bernoulli (1667-1748) used the notation ¢x for the first time in 1718 to
indicate a function of x. But the general adoption of symbols like £, F, ¢, v ... to
represent functions was made by Leonhard Euler (1707-1783) in 1734 in the first
part of his manuscript “Analysis Infinitorium”. Later on, Joeph Louis Lagrange
(1736-1813) published his manuscripts “Theorie des functions analytiques” in
1793, where he discussed about analytic function and used the notion f (x), F(x),
0(x) etc. for different function of x. Subsequently, Lejeunne Dirichlet
(1805-1859) gave the definition of function which was being used till the set
theoretic definition of function presently used, was given after set theory was
developed by Georg Cantor (1845-1918). The set theoretic definition of function
known to us presently is simply an abstraction of the definition given by Dirichlet
in a rigorous manner.

4

o,
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Chapter 2

12079CH02

INVERSE TRIGONOMETRIC
FUNCTIONS

o* Mathematics, in general, is fundamentally the science of
self-evident things. — FELIX KLEIN <y

2.1 Introduction

In Chapter 1, we have studied that the inverse of a function
/. denoted by f~', exists if fis one-one and onto. There are
many functions which are not one-one, onto or both and
hence we can not talk of their inverses. In Class XI, we
studied that trigonometric functions are not one-one and
onto over their natural domains and ranges and hence their
inverses do not exist. In this chapter, we shall study about
the restrictions on domains and ranges of trigonometric
functions which ensure the existence of their inverses and
observe their behaviour through graphical representations.
Besides, some elementary properties will also be discussed.

The inverse trigonometric functions play an important Aryabhata
role in calculus for they serve to define many integrals. (476-5504.D.)
The concepts of inverse trigonometric functions is also used in science and engineering.
2.2 Basic Concepts
In Class XI, we have studied trigonometric functions, which are defined as follows:
sine function, i.e., sine : R —[- 1, 1]
cosine function, i.e., cos : R —=[- 1, 1]

b8
tangent function, i.e.,tan : R—{ x: x=2n + 1) 3 neZ}-R

cotangent function, i.e., cot: R—{ x: x=nw,ne Z} -R

b8
secant function, i.e.,sec: R—{x:x=Q2n+ 1) PR eZ} —-R-(-1,1)

cosecant function, i.e., cosec: R—{ x:x=nnw, ne€ Z} -5 R-(-1,1)
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We have also learnt in Chapter 1 that if f: X—Y such that f(x) = y is one-one and
onto, then we can define a unique function g : Y—X such that g(y) = x, where x € X
and y =f(x), y € Y. Here, the domain of g = range of f and the range of g = domain
of f. The function g is called the inverse of f and is denoted by f~'. Further, g is also
one-one and onto and inverse of g is f. Thus, g'= (f !)~' = f. We also have

Frof) =10 =f"0)=x
and FofHM=rF"0) =f)=y

Since the domain of sine function is the set of all real numbers and range is the

>

closed interval [—1, 1]. If we restrict its domain to [_Tn %} , then it becomes one-one

and onto with range [— 1, 1]. Actually, sine function restricted to any of the intervals

- — T 3% . . .
ﬂ, _T , _E,E , {—, —} etc., is one-one and its range is [-1, 1]. We can,
2 2 2 2 2 2
therefore, define the inverse of sine function in each of these intervals. We denote the
inverse of sine function by sin™! (arc sine function). Thus, sin"! is a function whose

domain is [- 1, 1] and range could be any of the intervals {_7371: —_71:} , [— —} or

>

2

{g,%ﬂ, and so on. Corresponding to each such interval, we get a branch of the

function sin"!. The branch with range {?,E is called the principal value branch,
whereas other intervals as range give different branches of sin”!. When we refer
to the function sin™!, we take it as the function whose domain is [-1, 1] and range is

T We write sin : [1, 1] o | =
—>— |. We write sin™': [-1, T
22 22
From the definition of the inverse functions, it follows that sin (sin™ x) = x
. . . . T T . .
if —1<x<1 and sin™ (sin x) = x if —ESXSE. In other words, if y = sin™' x, then
sin y = x.

Remarks

(i) We know from Chapter 1, that if y = f(x) is an invertible function, then x =/ (y).
Thus, the graph of sin™' function can be obtained from the graph of original
function by interchanging x and y axes, i.e., if (a, b) is a point on the graph of
sine function, then (b, @) becomes the corresponding point on the graph of inverse
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of sine function. Thus, the graph of the function y = sin"' x can be obtained from
the graph of y = sin x by interchanging x and y axes. The graphs of y = sin x and
y =sin™! x are as given in Fig 2.1 (i), (ii), (iii). The dark portion of the graph of
y = sin”' x represent the principal value branch.

(i) It can be shown that the graph of an inverse function can be obtained from the

corresponding graph of original function as a mirror image (i.e., reflection) along
the line y = x. This can be visualised by looking the graphs of y = sin x and

y =sin”! x as given in the same axes (Fig 2.1 (iii)).

Y

e 2 : N
X R _n\§/1i0 T N\ 2n sn X
- 2

2
Yl
y=sinx
Fig 2.1 (i)
y X

- —T -
1 L2 N 2 T
X’ X X ~ H /X
-1/10 ¢ —n NS 2m
1T 72 —n2
. )
3n |
2
-2r
Sn
ik 5
v
’ 4
Y Y’
y=sin"x y=sinxandy=sin" x
Fig 2.1 (ii) Fig 2.1 (iii)

Like sine function, the cosine function is a function whose domain is the set of all

real numbers and range is the set [-1, 1]. If we restrict the domain of cosine function
to [0, 7], then it becomes one-one and onto with range [-1, 1]. Actually, cosine function
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restricted to any of the intervals [— &, 0], [0,x], [&t, 27] etc., is bijective with range as
[-1, 1]. We can, therefore, define the inverse of cosine function in each of these
intervals. We denote the inverse of the cosine function by cos™ (arc cosine function).
Thus, cos™! is a function whose domain is [-1, 1] and range Y

could be any of the intervals [-m, 0], [0, =], [&, 27] etc. \A
Corresponding to each such interval, we get a branch of the 5%
function cos™. The branch with range [0, 7t] is called the principal 2n[-

value branch of the function cos™!. We write
cos™': [-1, 1] — [0, =].

The graph of the function given by y = cos™ x can be drawn
in the same way as discussed about the graph of y = sin”! x. The

graphs of y = cos x and y = cos™' x are given in Fig 2.2 (i) and (ii). X 10 >X
v .
3n
_5n l = St 2
X'< 2 -T 2 n 2 -2
‘/—2n—3n\/% ()1 N “3n2n N7
/]
Y’ Y
y=cosx y=cos x
Fig 2.2 (i) Fig 2.2 (ii)
Let us now discuss cosec™'x and sec™'x as follows:
Since, cosec x = ——, the domain of the cosec function is the set {x: x € R and
sin x

x #nm, n € Z} and the range is the set {y: y € R,y >1or y < -1} i.e., the set
R — (-1, 1). It means that y = cosec x assumes all real values except —1 <y < 1 and is
not defined for integral multiple of m. If we restrict the domain of cosec function to

[—E > 5} —{0}, then itis one to one and onto with its range as the set R—(— 1, 1). Actually,
31 -7 T T
cosec function restricted to any of the intervals 7’7 —{—n}’ 7’5 - {0},

T 3m
[5,7} —{7} etc., is bijective and its range is the set of all real numbers R — (-1, 1).
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Thus cosec™ can be defined as a function whose domain is R— (-1, 1) and range could

=31 -7 -T T T 3n
i —,— | {7 —,—|—1{0 hadcady
be any of the intervals [ 2 ) } { }, [ > 2} { }, {2, 2} {r}etc. The

function corresponding to the range {_—; ,g} — {0} is called the principal value branch

of cosec™'. We thus have principal branch as

- T

-1 . _(_ —,—|—{0
cosec! : R (1,1)—){2 2} {0}
The graphs of y = cosec x and y = cosec™' x are given in Fig 2.3 (i), (ii).

-1
y=cosec x
y =cosecx

Fig 2.3 (i) Fig 2.3 (ii)

T
Also, since sec x = K ,the domain of y=sec xisthe set R— {x: x=2n+1) 5 ,
b

n € Z} and range is the set R — (-1, 1). It means that sec (secant function) assumes

T
all real values except —1 <y < 1 and is not defined for odd multiples of 3 If we

T
restrict the domain of secant function to [0, 7] — { 5 }, then it is one-one and onto with
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its range as the set R — (-1, 1). Actually, secant function restricted to any of the

—T
intervals [T, 0] — { 7 1 10, ] - {g} L[, 2m] - { 3?% } etc., is bijective and its range

isR—{-1, 1}. Thus sec™! can be defined as a function whose domain is R- (-1, 1) and

-7 T 3n
range could be any of the intervals [- 7, 0] — { B3 1,10, ] — { 3 b [, 2m] — { X } etc.

Corresponding to each of these intervals, we get different branches of the function sec™.

T
The branch with range [0, 7] — { 3 } is called the principal value branch of the

function sec™!. We thus have

sec!: R —(=1,1) = [0, ] — {g}

The graphs of the functions y = sec x and y = sec™! x are given in Fig 2.4 (i), (ii).

K
N

!

|

‘

‘
A4
>

YI
y=secx
Fig 2.4 (i)

Finally, we now discuss tan™' and cot™!

N\

y=sec'x

Fig 2.4 (ii)

We know that the domain of the tan function (tangent function) is the set

T
{x:xe Rand x # 2n +1) 5 ,n € Z} and the range is R. It means that tan function

T
is not defined for odd multiples of . If we restrict the domain of tangent function to

2
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-T T .. cy . .
(?,— , then it is one-one and onto with its range as R. Actually, tangent function

) _ -3t -1 T T T 3T e
restricted to any of the intervals | —,— |, | —>= |, | =—>— | etc., is bijective
2 2 2 2 22
and its range is R. Thus tan™' can be defined as a function whose domain is R and

. St om) (-n @) (7 3n
range could be any of the intervals > S 1l ) 2 and so on. These
T T
intervals give different branches of the function tan™'. The branch with range (7 S )

is called the principal value branch of the function tan™.
We thus have

y=tan'x

y=tanx
Fig 2.5 (i) Fig 2.5 (ii)

We know that domain of the cot function (cotangent function) is the set
{x:xe Rand x #nn, n € Z} and range is R. It means that cotangent function is not
defined for integral multiples of m. If we restrict the domain of cotangent function to
(0, ), then it is bijective with and its range as R. In fact, cotangent function restricted
to any of the intervals (-, 0), (0, 7), (7T, 27) etc., is bijective and its range is R. Thus
cot™! can be defined as a function whose domain is the R and range as any of the
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intervals (-m, 0), (0, ®), (7, 27) etc. These intervals give different branches of the
function cot™'. The function with range (0, 7) is called the principal value branch of
the function cot™'. We thus have

cot': R — (0, m)

The graphs of y = cot x and y = cot 'x are given in Fig 2.6 (i), (ii).

y=cotx
Fig 2.6 (i) Fig 2.6 (i)
The following table gives the inverse trigonometric function (principal value
branches) along with their domains and ranges.

sin! : [-1, 1] - —E,E
A L 2 2]
cos™! : [-1, 1] - [0, ]
=
SOk s ==
cosec : R-(-1,1) — 7272 {0}
T
sec! : R-(-1,1) — [0,7t]—{5}
tan™! : R - [__R’Ej
2 2
cot™! c R - (0, T)
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1. sin"'x should not be confused with (sin x)~'. In fact (sin x)™' =

; and

. . . . sin x
similarly for other trigonometric functions.

2. Whenever no branch of an inverse trigonometric functions is mentioned, we
mean the principal value branch of that function.

3. The value of an inverse trigonometric functions which lies in the range of
principal branch is called the principal value of that inverse trigonometric
functions.

We now consider some examples:

1
Example 1 Find the principal value of sin™! (ﬁ} .

1 1
Solution Let sin”! | —= |=y. Then, siny = ——.
(\E j g N

-
2 b

NP

) and

We know that the range of the principal value branch of sin™ is (

1 1 T
sin [gj = ﬁ Therefore, principal value of sin™! (ﬁ} is n

-1
Example 2 Find the principal value of cot™ (ﬁ}

Solution Let cot! | == | = y. Then,
\/g y

t a t[nj cot(ﬂ: ﬂ:) cot(zﬂ:)
coty=—==—cot| — | = -—| = —
Y= 3 3 3

We know that the range of principal value branch of cot™ is (0, @) and

((Z)-2n incipal val ft‘l(__lJ'E
CO 3 = \/g . Hence, princCipal value or co \/§ 1S 3

| EXERCISE 2.1|

Find the principal values of the following:

1 3
1. sin!' | =% 2. cos™ 5 3. cosec™! (2)

1
4. tan™ (_\E) 5. cos™ [_Ej 6. tan™' (=1)
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2

7. sec’! (ﬁ} 8. cot’ (\/3) 9. cos™ (_fJ

10. cosec™ (—/2)
Find the values of the following:

11. tan”'(1) + cos' ——= +sin”' —— 12. cos' — +2sin”' —
2 2 2

13. Ifsin!x =y, then

T T

A) 0<y< B) ——=y=<—

(A) O0sy<m (B) S SYsT

C) 0 D _E< <E

©) O0<y<m (D) AR

14. tan' V3 —sec™'(=2) is equal to

T L 2n
A) w B) — C — D) —
(A) (B) 3 © 3 (D) 3

2.3 Properties of Inverse Trigonometric Functions

In this section, we shall prove some important properties of inverse trigonometric
functions. It may be mentioned here that these results are valid within the principal
value branches of the corresponding inverse trigonometric functions and wherever
they are defined. Some results may not be valid for all values of the domains of inverse
trigonometric functions. In fact, they will be valid only for some values of x for which
inverse trigonometric functions are defined. We will not go into the details of these
values of x in the domain as this discussion goes beyond the scope of this text book.
Let us recall that if y = sin"'x, then x = sin y and if x = sin y, then y = sin"'x. This is
equivalent to
. . . T T
sin (sin"' x)=x,xe [- 1, 1] and sin”! (sin x) = x, x € 35
Same is true for other five inverse trigonometric functions as well. We now prove
some properties of inverse trigonometric functions.

1
1. (i) sin! —=cosec'x,x 21lorx<-1
x

1
(ii) cos! — =secx,x>21lorx<-1
x
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1
(iii) tan™! P cot'x, x>0

To prove the first result, we put cosec™ x =y, i.e., x = cosec y

Therefore — =siny
X
Hence sin! —=y
X
. 1
or sin! — = cosec! x
X
Similarly, we can prove the other parts.
2. (@) sin! (—x)= —-sinlx, xe [-1, 1]
(ii) tan! (~x) =—tan'x, x € R
(iii) cosec™ (-=x) = — cosec!' x, lx1 =1
Let sin! (—x) = y, i.e., —x = sin y so that x = — sin y, i.e., x = sin (-y).
Hence sin! x = -y =—sin! (—x)
Therefore sin”! (=x) = — sin"lx

Similarly, we can prove the other parts.
3. (i) cos'(=x) = —-cos'x,x € [-1, 1]
(ii) sec! (=x) =T -sec!x, Ix12>1
(iii) cot! (-x) = T — cot'x, x € R
Let cos™ (=x) = y i.e., — x = cos y so that x = — cos y = cos (T — y)
Therefore cos'x=m—y=7-cos! (=x)

Hence cos!' (=x) = —cos! x
Similarly, we can prove the other parts.

o . n
4. (i) sin' x + cos' x = E,xe [-1, 1]

T
(i) tan'x + cot™'x = 5% e R

T
(iii) cosec'x + sec'x = 5 Ix1>1

Let sin”' x = y. Then x = sin y = cos

VR

r_
57y

—sin'x

N

T
Therefore cos' x = E_y =
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T
Hence sin! x + cos! x = B
Similarly, we can prove the other parts.
. +
5. (i) tanx + tan™' y = tan™! rry ,xy <1
1-xy
(i) tan"x — tan' y = tan” =2 xy>_1

+ xy

X+y
(iii) tan'x + tan!y = 7 + tan™ (l—xy] xy>1;x,y>0

Let tan' x = 0 and tan' y = ¢. Then x = tan 0, y = tan ¢

tanO+tan¢  x+y
I-tanOtan¢ 1—xy

Now tan(0+¢) =

This gives 0 + ¢ = tan 1—xy

Xty

Hence tan”! x + tan! y = tan™! 1
—Xy

In the above result, if we replace y by —y, we get the second result and by replacing
y by x, we get the third result as given below.

6. (@) 2tan” x = sin” - * L Ixl<1
+ X

(ii) 2tan™! x = cos™! To 2 x20
2x

(iii) 2 tan™! x = tan™!

1 2,—1<x<1
-Xx

Let tan™! x = y, then x = tan y. Now

2x _ 2tany

1 — -1 —
=S 14 tan? y

sin! ——~
1+ x?

=sin’! (sin 2y) =2y =2tan"' x
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1—x2 l—tan® y
Also cos™ P cos™! m = cos™! (cos 2y) = 2y = 2tan”! x

(i) Can be worked out similarly.

We now consider some examples.

Example 3 Show that
i) sin / 9 anly ———<x<—
(1) s1n1(2x 1_x2)—2s1n1x, \/E_x_ 5

1
i) sin (2xy1-x?) =2 cos" x, 7 <A<

Solution

(i) Let x = sin ©. Then sin™! x = 6. We have
sin”! (2XM) = sin™! (2sin6 1-sin? 6)
= sin"! (2sin6 cosb) = sin™! (sin20) = 20
=2sinlx
(i) Take x = cos 6, then proceeding as above, we get, sin™* (2 xm ) =2cos' x

1 a2 43
-l —+tan  —=tan —
Example 4 Show that tan > 1 1

Solution By property 5 (i), we have

1 2
1 2 CRET] 43
LHS. = tan”' —+tan' = =tan_1&=tan ‘1£ = tan 1—=R,H,S,
2 11 1 1 2 20 4
_ixi
2 11
. Cosx _3n

Example 5 Express tan~ —<x <g in the simplest form.

l-sinx = 2
Solution We write

2 X

oS x cos? Z—sin? =
tan_l( J = tan™! 2 2

1—sinx X . 92X . X X
cos® = +sin® = —2sin = cos =
2 2 2 2
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= tan~!
— tan™!
— tan”!
Alternatively,

COS x

—

tanl( J =tan

1—sinx

X . X X . X
COS —+S1in— || COS——SIn —
[cosgvsin Joos3-sn3)

X . X |2

COS— —SIn—

[ n3)

Example 6 Write COt_l[

NEE|

X .
COS—+sin— 1+ tan—
2 = tan~
X .
COS——SIn— 1—tan—
L 2
T X T X
tan| —+— || =—+=
L (4 2)} 4 2
) . [T=2x
sin| ——x sin
1 2
=tan | —————

1
j, x > 1 in the simplest form.

Solution Let x = sec 0, then \/xz —-1= \/sec2 0—-1=tan®
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Therefore, cot™ = cot™! (cot ) = 0 = sec”! x, which is the simplest form.

x =1

2x 3x—x°

-1

Example 7 Prove that tan™' x + tan 2= tan™! [ 2 I xl<—
— —

Solution Let x = tan 0. Then 6 = tan™! x. We have

[ 3x=x° [ 3tan6—tan> 0
R.H.S. = tan > |Ftan” | —————
1-3x 1-3tan" 6

=tan™! (tan30) = 30 = 3tan'x =tan™' x + 2 tan™!' x

2x
=tan! x + tan! — 2 = L.H.S. (Why?)

Example 8 Find the value of cos (sec™! x + cosec™! x), |x|1>1

T
Solution We have cos (sec™ x + cosec™ x) = cos [Ejz 0

| EXERCISE 2.2|

Prove the following:
1. 3sin™!' x =sin™! Bx — 4x%), x€ [—l, l}
’ 2 2
1
2. 3cos! x =cos™! (4x*— 3x), xe [E, 1}

2 47 1
3. tan'-—+tan ' —tan™'—

11 24 2

i1 i1

4. 2tan” —+tan —=tan —
2 7

Write the following functions in the simplest form:

N+ -1 S

5. tan” ———— ,x#0 6. AN ———= |x|>1
X x -1
_ 1—cosx cosx—sinx | — 3
1 - T T
7. tan ,0<x<m 8. tan'| ———— | = <x< 2=
1+ cosx COS x+sinx 4 4
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> ,xl<a
a —x

[361 xX—Xx
10. tan

a—3axJ a>0; \/7 f

Find the values of each of the following:

1
11. tan™ {ZCOS[ZSinl EH 12. cot (tan"'a + cot'a)

1 2x 11_ 2

- y
1+x2+COS 1+y2]|x|<l,y>Oandxy<l

.
tan—| sin
13. 2{

.1 _
14. If sin [sm lg"‘COS lszl,then find the value of x

-1 X— 1 —1 X + 1 T
15. If tan +tan =—, then find the value of x
x=2 x+2 4°
Find the values of each of the expressions in Exercises 16 to 18.
. . 2w
16. sin 1(s1n—j 17. tan [tan3—nj
3 4

18. tan|sin”' é+cot_l y
5 2

19. cos™’ (cos%) is equal to

PR N
(A) < (B) % (© 3 D) ¢
20. sin [g —sin™! (—%)) is equal to
A) = B) - 0+ D) 1
) 3 B) 3 © (D)
21. tan! 3—cot_1(—\/§) is equal to
(A) = ® = (©0 (D) 23
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Miscellaneous Examples
. R I 3n
Example 9 Find the value of sin™ (sin ?)

. .1, . 3n 31
Solution We know that sin™'(sin x) = x. Therefore, sin™ (sin ?) =?

. |_xx L . :
But ?9—: 55 which is the principal branch of sin' x
H sin (OF) = sin(m—-%) = sin =~ and 2’%[ I "}
owever —)= —~)=sin— and —€e|—-=,=
© 5 5 5 5 122
R Loy, 2 2
Therefore sin 1(s1n3—7t)=s1n l(sm—n):—n
5 5 5
E le 10 Show that sin_lé—sin‘li—cos‘lﬁ
xample ow thal 5 17 25
. . 13 .1 8
Solution Let sin” —=x and sinT —=1y
5 17
. 3 . 8
Therefore s1nx=g and siny=—

17
. / 9 4
Now cosx=+/1—sin® x = 1—2—5 = 3 (Why?)

4 1
and cosy =+/l—sin’ y = 1—%:%

We have €0s (x—y) = c0S x cOS y + sin x sin y

4 15 3 8 &4
__X [ p—

5717 517 85

1

Theref X—y=cos —
erefore y 25
4
Hence sin”! g —sin™! ﬁ =cos™! 8—
5 17 85
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12 4
Example 11 Show that sin”' —=+cos™' =+ tan™ Q =T
13 5 16

12 4
Solution Let sin”'—==x, cos'—=y,tan”' 6 =z
13 5 16
) 4
Then sinx=—, cosy=—, tanz=—
13 5 16
Theref cos sin tan 12 and tan >
X=—, =—, X=— = —
erefore e y 5 5 y 2
12 3
tanx+tany ?—FZ 63
We have tan(x+y) = =1 3
I-tanxtany _12,° 16
Hence tan(x+y)=—tanz
ie., tan (x + y) = tan (—z) or tan (x + y) = tan (T — 7)
Therefore X+y=—z Oor x+y=m—-2
Since x, y and z are positive, x + y # —z (Why?)
H sin”' 12+cos_l 4+tan_l 63 T
ence X+y+z or 3 5 6

JAf — tanx > -1

b

acosx—bsinx a
bcosx+asinx

Example 12 Simplify tan‘{
Solution We have,

acosx—bsinx

. ——tanx
acos x—bsin x
tan || SN TR | o beosx | _ ) b
bcosx+asinx bcosx+asinx a
—_— 1+—tan x
bcos x

La - L a
tan 1Z—tan "(tanx)= tan™' = —x
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T
Example 13 Solve tan™' 2x + tan™' 3x = 0
T
Solution We have tan™! 2x + tan™! 3x = 2
2x+
or tan™' x—3x — K
1—-2xX3x 4
_ Sx i
1
i tan - —
e [1—6x2j 4
Theref: 5x ( T |
= lan—=
erefore 6r 2
or 6x*+5x—1=0ie.,(6x-1)(x+1)=0
1
which gives x= 2 orx=-—1.

Since x =— 1 does not satisfy the equation, as the L.H.S. of the equation becomes

1
negative, X :E is the only solution of the given equation.

Miscellaneous Exercise on Chapter 2

Find the value of the following:

1. cos ! [cosﬁj 2. tan l[tan—j
6 6
Prove that
3. 2sin’! é = tan_lﬁ 4. sin_lﬁ +sin”! é = tan_lﬂ
5 7 17 5 36
4 4 412 433 412 . 13 . 156
5. €COS —+Cc0S —=cCc0oS — 6. COS —+SIn —=sn —
5 13 65 13 5 5
463 5. 43
7. tan — =s8In —+CO0S —
16 13 5
41 a1 a1 _ll_E
8. tan —+tan —+tan —+tan =
5 7 3 8 4
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Prove that

1 X
-1 -1
tan =—COS —_—
N, iy Fe ol

10. cot1(\/1+Sinx+\/l_SinxJ=£,XE(O, )

x/1+sinx —\/l—sinx

\/1+ 1= 1 1
11. tan™ al al —E——cos’lx, —— < x <1 [Hint: Put x = cos 20]
Ji+x+4/1-x) 4 2 J2
12. 9_7t_2sin_ll _S i
8 4 3 4 3

Solve the following equations:

gl=x 1 _
13. 2tan™! (cos x) = tan™! (2 cosec x) 14. tan 11+ :Etan 'x, (x> 0)
X

15. sin (tan™'x), lxl < 1 is equal to

X 1 1 X
B C D
1-x? ® Vi-x? © 1+ x7 ) VI+x?

(A)

T
16. sin'(l —x)-2sin'x = 3 then x is equal to

1 1 1
(A) 0. 5 ® Ly  (©0 ™ 5
af x qXx—y
tan”'| = |—tan' Z—2 .
17. (yj Xty is equal to
A = B) = © = o) Z
2 3 4 4
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Summary

@ The domains and ranges (principal value branches) of inverse trigonometric
functions are given in the following table:

53

Functions Domain Range
(Principal Value Branches)
- T 7
y=sin'x (-1, 1] | 272
y=cos!x [-1, 1] [0, ]
g
= cosec™! x R-(-1,1 —,—|-1{0
y =1LD) 2 2] {0}
T
y =sec! x R-(-1,1) [0, 7] — {5}
. P
y=tan"' x R )
y=cot!x R (0, m)
@ sin'x should not be confused with (sin x)™'. In fact (sin x)™! = m and

similarly for other trigonometric functions.

@ The value of an inverse trigonometric functions which lies in its principal
value branch is called the principal value of that inverse trigonometric
functions.

For suitable values of domain, we have

¢ y=sin'x=x=siny ® x=siny =>y=sinlx
@ sin(sin!'x)=x ¢ sin!' (sinx) =x

¢ sin'! ;= cosec! x ® cos!'(—x) =m—cos!x
® cos! ; = sec’lx ® cot!(—x)=m—-cot'x
¢ tan! ;= cot! x ® sec! (—x)=m-—sec'x
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¢ sin!(—x)= —sin'x ¢ tan' (—x) = —tan! x
T
¢ tan'x + cot'x = 3 ® cosec! (—x) = — cosec™! x
x+y T
¢ tan'x + tan’'y = tan™! ¢ sinlx+costx=—
1—xy 2
x+y T
¢ tan'x + tan’'y = tan™! & cosec'x +seclx = —
1—xy 2
‘ 2 1 in-1 2x 1 1_ x2 2 1 1 —2x
tan™! x = sin”! ——— = cos~ tan"'x = tan
1+ x 1+ x> 1-x2
x+y
¢ tan'x + tan’'y = 7 + tan’! —xy )’ xy>1;x, y>0

Historical Note

The study of trigonometry was first started in India. The ancient Indian
Mathematicians, Aryabhata (476A.D.), Brahmagupta (598 A.D.), Bhaskara I
(600 A.D.) and Bhaskara Il (1114 A.D.) got important results of trigonometry. All
this knowledge went from India to Arabia and then from there to Europe. The
Greeks had also started the study of trigonometry but their approach was so
clumsy that when the Indian approach became known, it was immediately adopted
throughout the world.

In India, the predecessor of the modern trigonometric functions, known as
the sine of an angle, and the introduction of the sine function represents one of
the main contribution of the siddhantas (Sanskrit astronomical works) to
mathematics.

Bhaskara I (about 600 A.D.) gave formulae to find the values of sine functions
for angles more than 90°. A sixteenth century Malayalam work Yuktibhasa
contains a proof for the expansion of sin (A + B). Exact expression for sines or
cosines of 18°, 36°, 54°, 72°, etc., were given by Bhaskara II.

The symbols sin™! x, cos™ x, etc., for arc sin x, arc cos x, etc., were suggested
by the astronomer Sir John F.W. Hersehel (1813) The name of Thales
(about 600 B.C.) is invariably associated with height and distance problems. He
is credited with the determination of the height of a great pyramid in Egypt by
measuring shadows of the pyramid and an auxiliary staff (or gnomon) of known
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height, and comparing the ratios:

H & .
S = ~E tan (sun’s altitude)

Thales is also said to have calculated the distance of a ship at sea through
the proportionality of sides of similar triangles. Problems on height and distance
using the similarity property are also found in ancient Indian works.

K/
L 4
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Chapter 3

12079CHO3

(MATRICES )

%+ The essence of Mathematics lies in its freedom. — CANTOR

3.1 Introduction

The knowledge of matrices is necessary in various branches of mathematics. Matrices
are one of the most powerful tools in mathematics. This mathematical tool simplifies
our work to a great extent when compared with other straight forward methods. The
evolution of concept of matrices is the result of an attempt to obtain compact and
simple methods of solving system of linear equations. Matrices are not only used as a
representation of the coefficients in system of linear equations, but utility of matrices
far exceeds that use. Matrix notation and operations are used in electronic spreadsheet
programs for personal computer, which in turn is used in different areas of business
and science like budgeting, sales projection, cost estimation, analysing the results of an
experiment etc. Also, many physical operations such as magnification, rotation and
reflection through a plane can be represented mathematically by matrices. Matrices
are also used in cryptography. This mathematical tool is not only used in certain branches
of sciences, but also in genetics, economics, sociology, modern psychology and industrial
management.

In this chapter, we shall find it interesting to become acquainted with the
fundamentals of matrix and matrix algebra.

3.2 Matrix

Suppose we wish to express the information that Radha has 15 notebooks. We may
express it as [15] with the understanding that the number inside [ ] is the number of
notebooks that Radha has. Now, if we have to express that Radha has 15 notebooks
and 6 pens. We may express it as [15 6] with the understanding that first number
inside [ ] is the number of notebooks while the other one is the number of pens possessed
by Radha. Let us now suppose that we wish to express the information of possession
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of notebooks and pens by Radha and her two friends Fauzia and Simran which

is as follows:

Radha has 15 notebooks and 6 pens,
Fauzia has 10 notebooks and 2 pens,
Simran has 13 notebooks and 5 pens.
Now this could be arranged in the tabular form as follows:
Notebooks Pens
Radha 15 6
Fauzia 10 2
Simran 13 5
and this can be expressed as
15 6 <« First row
10 2 < Second row
13 5 < Third row
T T
First Second
Column Column
or
Radha Fauzia Simran
Notebooks 15 10 13
Pens 6 2 5
which can be expressed as:
15 10 13| <« First row
6 2 5| <« Second row
T ) )
First Second Third
Column Column Column

In the first arrangement the entries in the first column represent the number of

note books possessed by Radha, Fauzia and Simran, respectively and the entries in the
second column represent the number of pens possessed by Radha, Fauzia and Simran,
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respectively. Similarly, in the second arrangement, the entries in the first row represent
the number of notebooks possessed by Radha, Fauzia and Simran, respectively. The
entries in the second row represent the number of pens possessed by Radha, Fauzia

and Simran, respectively. An arrangement or display of the above kind is called a
matrix. Formally, we define matrix as:

Definition 1 A matrix is an ordered rectangular array of numbers or functions. The
numbers or functions are called the elements or the entries of the matrix.

We denote matrices by capital letters. The following are some examples of matrices:

_ | .
A=| 0 J5|.B=[35 -1 2| c=| * 7
5 cosx sinx+2 tanx
3 6 \/g 5 7

In the above examples, the horizontal lines of elements are said to constitute, rows
of the matrix and the vertical lines of elements are said to constitute, columns of the

matrix. Thus A has 3 rows and 2 columns, B has 3 rows and 3 columns while C has 2
rows and 3 columns.

3.2.1 Order of a matrix

A matrix having m rows and n columns is called a matrix of order m x n or simply m xn
matrix (read as an m by n matrix). So referring to the above examples of matrices, we
have A as 3 x 2 matrix, B as 3 x 3 matrix and C as 2 x 3 matrix. We observe that A has
3 x 2 =6 elements, B and C have 9 and 6 elements, respectively.

In general, an m x n matrix has the following rectangular array:

a ap, iz eee dyy oee Ay,
6.121 flzz ?23 e C_lzj e ‘.12,1
‘:ln éliZ éZIS o ‘:1,/ o ‘:Zm
&ml &m ZZmS“‘ ‘.ij cee &mn

or A=Ja

)
Thus the " row consists of the elements a,, a,, a,,..., a_, while the Jj® column
consists of the elements a, a,, dy,..., d

1€i<m,1£j<n i,je N

mxn’

) ) mj’
In general a, is an element lying in the i row and j® column. We can also call
it as the (i, j)" element of A. The number of elements in an m x n matrix will be

equal to mn.
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In this chapter

1. We shall follow the notation, namely A=[a ]  toindicate that Ais a matrix

ij-mxn

of order m X n.

2. We shall consider only those matrices whose elements are real numbers or
functions taking real values.

We can also represent any point (x, ¥) in a plane by a matrix (column or row) as

X
L}} (or [x, y]). For example point P(0, 1) as a matrix representation may be given as

P:{ﬂ or [0 1].

Observe that in this way we can also express the vertices of a closed rectilinear
figure in the form of a matrix. For example, consider a quadrilateral ABCD with vertices
A(1,0),B(3,2),C(1,3),D(-1,2).

Now, quadrilateral ABCD in the matrix form, can be represented as

A B CD Al 0
1 3 1-1 Bl 3 2
X = or Y=
02 3 2, Cl1 3
Dl-1 24><2

Thus, matrices can be used as representation of vertices of geometrical figures in
a plane.
Now, let us consider some examples.

Example 1 Consider the following information regarding the number of men and women
workers in three factories I, II and III

Men workers Women workers
I 30 25
II 25 31
III 27 26

Represent the above information in the form of a 3 x 2 matrix. What does the entry
in the third row and second column represent?
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Solution The information is represented in the form of a 3 x 2 matrix as follows:

30 25
A=|25 31
27 26

The entry in the third row and second column represents the number of women
workers in factory III.

Example 2 If a matrix has 8 elements, what are the possible orders it can have?

Solution We know that if a matrix is of order m x n, it has mn elements. Thus, to find
all possible orders of a matrix with 8 elements, we will find all ordered pairs of natural
numbers, whose product is 8.

Thus, all possible ordered pairs are (1, 8), (8, 1), (4, 2), (2,4)

Hence, possible orders are 1 x 8, 8 x1,4 x2,2x4

. . 1
Example 3 Construct a 3 x 2 matrix whose elements are given by a; =5 li-3jl.

. Gy
Solution In general a 3 x 2 matrix is given by A =|a,, a,, |-

az; Az

I~ -
Now a,-j=5|l—3]|,i=1,2,3andj=1,2.
1 1 5
Therefore a11=5|1—3><1I=1 a12=5|1—3><2|=5
1 1 1
ay ==12=-3xll=—  a,,=—12-3x21=2
2175 > 275

a31=%|3—3x1I=0 a32=%l3—3><2I=%

Hence the required matrix is given by A =

S N = =
NR|W N | W
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3.3 Types of Matrices
In this section, we shall discuss different types of matrices.
(i) Column matrix

A matrix is said to be a column matrix if it has only one column.

0
V3
For example, A =| —1 | is a column matrix of order 4 x 1.
1/2

In general, A = [aij] 11 18 @ column matrix of order m X 1.
(i) Row matrix

A matrix is said to be a row matrix if it has only one row.

For example, B = [—% J5 2 3} is a row matrix.

1x4
In general, B = [b,.j] |« 18 a row matrix of order 1 x n.
(iii) Square matrix

A matrix in which the number of rows are equal to the number of columns, is
said to be a square matrix. Thus an m X n matrix is said to be a square matrix if
m =n and is known as a square matrix of order ‘n’.

-1 0

For example A = W2 1 is a square matrix of order 3.

B ojlw W

3 -1

In general, A = [a_]

ij= mxm

is a square matrix of order m.

If A =[a,] is a square matrix of order 7, then elements (entries) a,,, a,,, ..., a,,
1 -3 1

are said to constitute the diagonal, of the matrix A. Thus, if A=|2 4 -1].
3 5 6

Then the elements of the diagonal of A are 1, 4, 6.
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@iv)

)

(vi)
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Diagonal matrix

A square matrix B = [bij] 18 said to be a diagonal matrix if all its non

diagonal elements are zero, that is a matrix B = [, ] is said to be a diagonal

matrix if b, = 0, when i # . iH mxm
1 0 -1.1 0 0

For example, A =[4], B ={ 0 2}, C=| 0 2 0}, are diagonal matrices
0O 0 3

of order 1, 2, 3, respectively.
Scalar matrix

A diagonal matrix is said to be a scalar matrix if its diagonal elements are equal,
that is, a square matrix B = [b_] is said to be a scalar matrix if

ij" nxn

b,.j=0, wheni #j

bij =k, wheni =j, for some constant k.
For example

NERR
-1 0
A=[3], B= ., C=l0 V3 0
0 -1
0 0 3
are scalar matrices of order 1, 2 and 3, respectively.
Identity matrix

A square matrix in which elements in the diagonal are all 1 and rest are all zero
is called an identity matrix. In other words, the square matrix A = [a_] is an

jm nxn

. - {1 if i=j
1dentity matrix, it @; = . . ..
0 if i+

We denote the identity matrix of order n by I . When order is clear from the
context, we simply write it as I.

0 0
For example [1], 0 11° are identity matrices of order 1, 2 and 3,
0 1

respectively.

Observe that a scalar matrix is an identity matrix when k = 1. But every identity
matrix is clearly a scalar matrix.
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(vii) Zero matrix

A matrix is said to be zero matrix or null matrix if all its elements are zero.

0 0|0 0 O

zero matrix by O. Its order will be clear from the context.

0 0 0 0 0
For example, [0], , , [0, 0] are all zero matrices. We denote

3.3.1 Equality of matrices
Definition 2 Two matrices A = [aij] and B = [b,.j] are said to be equal if
(1) they are of the same order

(i) each element of A is equal to the corresponding element of B, that is a,= bij for
all i and j.

2 3 2 3 _ 3.2 2 3
For example, and are equal matrices but and are
0 1 0 1 0 1 01

not equal matrices. Symbolically, if two matrices A and B are equal, we write A = B.

Xy -15 0
Iflz al|=|2 \/8 ,thenx=—1.5,y=0,z=2,a=\/E,b=3,c=2
b ¢ 3 2

x+3 z4+4 2y-7 0 6 3y-2
Example 4 If -6 a-1 0 |=]-6 -3 2c+2
b-3 =21 O 2b+4 =21 O

Find the values of a, b, ¢, x, y and z.

Solution As the given matrices are equal, therefore, their corresponding elements
must be equal. Comparing the corresponding elements, we get
x+3=0, z+4=06, 2y-T7=3y-2
a—1=-3, 0=2c+2 b-3=2b+4,
Simplifying, we get
a=-2,b=-T,c=-1,x=-3,y=-5,z=2

Example 5 Find the values of a, b, ¢, and d from the following equation:

2a+b a-2b| [4 -3
Sc—d 4c+3d| |11 24
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Solution By equality of two matrices, equating the corresponding elements, we get
2a+b=4 Sc-d=11
a—-2b=-3 4e+3d=24
Solving these equations, we get
a=1,b=2,c=3andd=4

EXERCISE 3.1
2 5 19 7
5

1. Inthe matrix A=|35 -2 5 12 |, write:

V31 -5 17

(1) The order of the matrix, (i) The number of elements,

(i) Write the elements Ay Uy Ayyy Ay Ay

2. If amatrix has 24 elements, what are the possible orders it can have? What, if it
has 13 elements?

3. If amatrix has 18 elements, what are the possible orders it can have? What, if it
has 5 elements?

4. Construct a 2 x 2 matrix, A = la,], whose elements are given by:

i+ )) L . C(i+2))
1 a Hi%Y) () ay —; (i)  ay =
5. Construct a 3 x 4 matrix, whose elements are given by:
0] aU=EI—3l+]I (i) a;=2i—j
6. Find the values of x, y and z from the following equations:
xX+y+z 9
|14 3 y z x+y 2 6 2| . _); 5
= = XTZ =
® x 5 15 i) S5+z xy 5 8 (i)
y+z 7

7. Find the value of a, b, c and d from the equation:

a—b 2a+c B -1 5
2a—-b 3c+d| |0 13
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8' A = [aij]m x n\

(A) m<n B) m>n C) m=n (D) None of these

9. Which of the given values of x and y make the following pair of matrices equal

3x+7 5 0 y-2
y+1 2-3x|’|8 4

is a square matrix, if

(A) x= ER y=17 (B) Not possible to find
C) y=7 = D) x=— —
= X=— X=—, y=—
(©) y=7. x=- (D) x=—, y=
10. The number of all possible matrices of order 3 x 3 with each entry O or 1 is:
(A) 27 (B) 18 (©) 81 (D) 512

3.4 Operations on Matrices

In this section, we shall introduce certain operations on matrices, namely, addition of
matrices, multiplication of a matrix by a scalar, difference and multiplication of matrices.

3.4.1 Addition of matrices

Suppose Fatima has two factories at places A and B. Each factory produces sport
shoes for boys and girls in three different price categories labelled 1, 2 and 3. The
quantities produced by each factory are represented as matrices given below:

Factory at A Factory at B
Boys Girls Boys Girls
1| 80 60 1| 90 50
21 75 65 21 70 55
31 9 85 31 75 75

Suppose Fatima wants to know the total production of sport shoes in each price
category. Then the total production

In category 1 : for boys (80 + 90), for girls (60 + 50)
In category 2 : for boys (75 + 70), for girls (65 + 55)
In category 3 : for boys (90 + 75), for girls (85 + 75)

80+90 60+50
This can be represented in the matrix form as | 75+ 70 65+55 .

90+75 85+75
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This new matrix is the sum of the above two matrices. We observe that the sum of
two matrices is a matrix obtained by adding the corresponding elements of the given

matrices. Furthermore, the two matrices have to be of the same order.

ay 4 4 by by, b,

Thus, if A= { } isa2 x 3 matrix and B= { } is another

Qy dy Ay 21 U» D3

ay +by ap+by a13+b13:|

2x3 matrix. Then, we define A +B = {
Ay +by Ay t+by Ay tby

In general, if A = [aij] and B = [b,-,-] are two matrices of the same order, say m X n.
Then, the sum of the two matrices A and B is defined as a matrix C = [c. ]

ij"mxn’

where
c,=a;+ bij, for all possible values of i and ;.

Example 6 Given A ={ 5

Since A, B are of the same order 2 x 3. Therefore, addition of A and B is defined
and is given by

243 1445 1-1] [24+3 1+/5 0
A+B= 1= 1
2-2 343 0+— 0 6 =

2 2

1. We emphasise that if A and B are not of the same order, then A + B is not

2 3
defined. For example if A =L 0} ,B= E 3 13}, then A + B is not defined.

2. We may observe that addition of matrices is an example of binary operation

on the set of matrices of the same order.

3.4.2 Multiplication of a matrix by a scalar

Now suppose that Fatima has doubled the production at a factory A in all categories
(refer to 3.4.1).
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Previously quantities (in standard units) produced by factory A were

Boys Girls
1] 80 60
21 75 65
31 90 85

Revised quantities produced by factory A are as given below:

Boys Girls
1]2x80 2x60
212x75 2x65
312%x90 2x85
160 120
This can be represented in the matrix form as | 150 130 |. We observe that
180 170

the new matrix is obtained by multiplying each element of the previous matrix by 2.

In general, we may define multiplication of a matrix by a scalar as follows: if
A= [aij] .« 18 @matrix and k is a scalar, then kA is another matrix which is obtained
by multiplying each element of A by the scalar k.

In other words, kA = k[a,], , =[k(a)], . thatis, (i, /)" element of kKA is ka,
for all possible values of i and .

3 1 15
For example, if A= \B 7 =31, then
2 0 5

3 115 9 3 45
3A=3[J5 7 -3|=|3J5 21 -9
2 0 5 6 0 15

Negative of a matrix The negative of a matrix is denoted by —A. We define
-A=(-1)A.
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3 1
For example, let A= { 5 } , then — A is given by
=5 x

A=(- DA=(D) 31 |3 -1
T B -5 x| |5 —x

Difference of matrices If A = [aij], B= [b,-,-] are two matrices of the same order,
say m x n, then difference A — B is defined as a matrix D = [dij], where d,.j =a, - bij’
for all value of i and j. In other words, D =A—B =A + (-1) B, that is sum of the matrix
A and the matrix — B.

1 23 3-13
Example 7 If A= and B= , then find 2A — B.
2 31 -1 0 2

Solution We have
1 23 3 -1 3
2A-B=2 -
2 31 -1 0 2
2 46 -3 1 3
- +
4 6 2 1 0 =2
2-3 441 6-3| |-1 5 3
441 640 2-2] |5 6 0
3.4.3 Properties of matrix addition
The addition of matrices satisfy the following properties:
(i) Commutative Law If A = [aij], B = [bij] are matrices of the same order, say
mxn,thenA+B =B +A.
Now A+B= [aij] + [b,-,-] = [a,-,- + b,-,-]
= [b,.j + aij] (addition of numbers is commutative)
=(b,] +[a]) =B +A
(i) Associative Law For any three matrices A = [a,-,-]’ B = [b,-,-]’ C= [C,-,-] of the
same order, say m xn, (A+B)+ C=A+ (B + O).
Now (A+B)+C= ([aij] + [b,-,-]) + [C,-,-]
= [a,-,- + b,-,-] + [C,-,-] = [(a,.j + b,-,-) + c,.j]

=la, + (b, + )] (Why?)
=la]+ [, +c)l=[a]+ (b]+[cD=A+B+O)
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(iii) Existence of additive identity Let A = [a,-,-] be an m x n matrix and
O be an m x n zero matrix, then A + O = O + A = A. In other words, O is the
additive identity for matrix addition.

)

(iv) The existence of additive inverse Let A = [a_]  be any matrix, then we
have another matrix as — A= [-a_] such that A+ (- A)=(-A)+ A= 0. So

ijimxn

— A is the additive inverse of A or negative of A.

3.4.4 Properties of scalar multiplication of a matrix

IfA= [aij] and B = [bij] be two matrices of the same order, say m X n, and k and [ are
scalars, then

(1) kKA+B)=kA+ikB, (1) (k+DA=kA+I[A

i) k(A +B) =k (a,] +[b,)
=kla,+b]l=1lk(a,+Db)]=I[ka)+ (kD)
=[kaij_]+[kbij]=k[aij]+k[bij]=kA+kB

@) (k+0D)A=(Gk+D]a]
=[k+Dal+lkal+la]l=kla]+lla]=kA+]A

8 0 2 2
Example 8 If A=|4 —2|andB=| 4 2 |, then find the matrix X, such that
3 6 =51

2A +3X =5B.

Solution We have 2A + 3X = 5B

or 2A +3X -2A =5B-2A
or 2A -2A +3X =5B -2A (Matrix addition is commutative)
or O0+3X=5B-2A (- 2A is the additive inverse of 2A)
or 3X=5B-2A (O s the additive identity)
1

or X = 5 (5B -2A)

2 2 8 0 | 10 -10 -16 0
or X=%542—24—2 =3 20 10 |+ -8 4

=5 1 36 =25 5 -6 —12
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—-10]
10-16 —10+0 —6 10 3
M o0-s 1044 |t 12 a2 4 1
3 o5-6 512 | °|-31 -7 3
31 -7
3 3 ]

5 2 3 6
Example 9 Find XandY,ifXJrY:L) 9} and X—Yz{o }

ool 5
;

Solution We have (X+Y)+(X-Y)=

8 8
or X+X)+(Y-Y)= } {0 8}
1{ 8} {4 4}
or X=— =
210 8| |0 4
Also X+Y)-(X-Y)= { } { }
{5—3 2—6} {2 —4}
or X-X)+(Y+Y)= = 2Y=
0 9+1 0 10
1{2 —4} {1 —2}
or Y=— =
210 10| |0 5

Example 10 Find the values of x and y from the following equation:

x 5 3 4 7 6
2 + —
7 y=3| |1 2 15 14
Solution We have
2{)6 5 }{3 —4} 76 2 10 ] .[3 4] [7 6
= = + =
T oy=3] [1 2 15 14 14 2y-6| |1 2| |15 14
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{2X+3 10-4 }_ 7 6] [2x43 6 ] [7 6
o 1441 2y-6+2) 7 |15 14| | 15 2y—4| |15 14

or 2x+3=7 and 2y—-4=14 (Why?)
or 2x=7-73 and 2y =18
4 18
or x=7 and y=7
ie. x=2 and y=09.

Example 11 Two farmers Ramkishan and Gurcharan Singh cultivates only three
varieties of rice namely Basmati, Permal and Naura. The sale (in Rupees) of these
varieties of rice by both the farmers in the month of September and October are given
by the following matrices A and B.

September Sales (in Rupees)

Basmati Permal Naura
A= |: 10,000 20,000 30,000:| Ramkishan

50,000 30,000 10,000 _| Gurcharan Singh

October Sales (in Rupees)

Basmati Permal Naura
B- |: 5000 10,000 6000 :| Ramkishan

20,000 10,000 10,000 _| Gurcharan Singh

(1) Find the combined sales in September and October for each farmer in each
variety.
(i) Find the decrease in sales from September to October.
(iii) If both farmers receive 2% profit on gross sales, compute the profit for each
farmer and for each variety sold in October.

Solution
(i) Combined sales in September and October for each farmer in each variety is
given by
Basmati Permal  Naura
15,000 30,000 36,000 | Ramkishan
A+B=

70,000 40,000 20,000 _| Gurcharan Singh
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(i) Change in sales from September to October is given by
Basmati Permal  Naura
A_B-= |: 5000 10,000 24,000 :| Ramkishan

30,000 20,000 0 Gurcharan Singh

2
(i) 2% of B= —xB=0.02 x B
100

Basmati Permal Naura
0.02| 5000 10,000 6000 Ramkishan
20,000 10,000 10,000

Gurcharan Singh

Basmati Permal Naura

|: 100 200 120 :| Ramkishan

400 200 200 Gurcharan Singh

Thus, in October Ramkishan receives ¥ 100, ¥ 200 and ¥ 120 as profit in the
sale of each variety of rice, respectively, and Grucharan Singh receives profit of 400,
%200 and X200 in the sale of each variety of rice, respectively.

3.4.5 Multiplication of matrices

Suppose Meera and Nadeem are two friends. Meera wants to buy 2 pens and 5 story
books, while Nadeem needs 8 pens and 10 story books. They both go to a shop to
enquire about the rates which are quoted as follows:

Pen — %5 each, story book — ¥ 50 each.

How much money does each need to spend? Clearly, Meera needs T (5 x 2 + 50 x 5)
that is ¥260, while Nadeem needs (8 x 5 + 50 x 10) %, that is ¥ 540. In terms of matrix
representation, we can write the above information as follows:

Requirements Prices per piece (in Rupees) Money needed (in Rupees)

25 5 5%2+5x50 | | 260
8 10 50 §x5+10x50] | 540
Suppose that they enquire about the rates from another shop, quoted as follows:

pen — 4 each, story book — 40 each.

Now, the money required by Meera and Nadeem to make purchases will be
respectively I (4 x 2+ 40 x 5) =%208 and T (8 x4 + 10 x 40) =3432
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Again, the above information can be represented as follows:

Requirements Prices per piece (in Rupees) Money needed (in Rupees)

25 4 4x2+40x5 | |208
8 10 40 8x4 +10x40| | 432
Now, the information in both the cases can be combined and expressed in terms of
matrices as follows:

Requirements Prices per piece (in Rupees) Money needed (in Rupees)

2 5 5 4 5x24+5x50 4x2+40x5
8 10 50 40 8X5 +10%x50 8x4 +10x40

260 208
T 1540 432

The above is an example of multiplication of matrices. We observe that, for
multiplication of two matrices A and B, the number of columns in A should be equal to
the number of rows in B. Furthermore for getting the elements of the product matrix,
we take rows of A and columns of B, multiply them element-wise and take the sum.
Formally, we define multiplication of matrices as follows:

The product of two matrices A and B is defined if the number of columns of A is
equal to the number of rows of B. Let A = [a,-,-] be an m x n matrix and B = [bjk] be an
n X p matrix. Then the product of the matrices A and B is the matrix C of order m X p.
To get the (i, k)" element ¢, of the matrix C, we take the i row of A and k" column
of B, multiply them elementwise and take the sum of all these products. In other words,
ifA=1a] B = [bjk] » then the i" row of Ais [a, a,, ... a ] and the k" column of

ijimxn’ nx in
blk
: . _ _ a.b.
Bis | - ,thenc, = a b, +a,b,+a b, +..+a b = ~ ij Yjk .
bnk

The matrix C = [c,] ) is the product of A and B.

mX

2 7
For example, if C = Ll) _; éﬂ and D=| -1 1 |,thenthe product CD is defined
5 -4
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7
1 -1 2
and is given by CD={0 3 4} —1 1|. Thisis a2 x 2 matrix in which each
5 -4

entry is the sum of the products across some row of C with the corresponding entries
down some column of D. These four computations are

Entry in 1 -1 2 2 7 HA+EEHEH+HR)G) ?

first row —1 1{=

firstcolumn |0 3 4 5 —4 ? ?

Entry in 1 -1 2 2 7 13 (HM+EH M) +2(4)
first row -1 1=

secondcolumn |0 3 4 5 —4 ? ?

Entry in (I Y I A I I 2

second row -1 1=

firstcolumn [0 3 4 5 -4 0(2)+3(-1)+4(5) ?

Entry in 11 2| 27 13 )
second row -1 1=
secondcolumn |0 3 4 5 —4 17 - 0(7)+3(1)+4(-4)

13 2
Thus CD =
17 -13

6 9 2 6 0
Example 12 Find AB, if A = and B = .
2 3 7 9 8

Solution The matrix A has 2 columns which is equal to the number of rows of B.
Hence AB is defined. Now

Ap | 0D+ID) 6(6)+9(9) 6(0)+9(8)
TL22)+3(7) 2(6)+3(9) 2(0)+3(8)

[12+63 36+81 0+72 75 117 72
| 4+21 12427 0+24| |25 39 24
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Remark If AB is defined, then BA need not be defined. In the above example, AB is
defined but BA is not defined because B has 3 column while A has only 2 (and not 3)
rows. If A, B are, respectively m x n, k x [ matrices, then both AB and BA are defined
if and only if n = k and / = m. In particular, if both A and B are square matrices of the
same order, then both AB and BA are defined.

Non-commutativity of multiplication of matrices

Now, we shall see by an example that even if AB and BA are both defined, it is not
necessary that AB = BA.

23
1 -2 3
Example 13 If A={ 4 9 5} and B=|4 5|, then find AB, BA. Show that
21
AB # BA.

Solution Since A is a 2 x 3 matrix and B is 3 x 2 matrix. Hence AB and BA are both
defined and are matrices of order 2 x 2 and 3 x 3, respectively. Note that

~ 23
AB 1 -2 3 45 2-8+46 3-10+3 | [0 -4
-4 2 5 T | —8+8+10 —12+10+5| |10 3
(23 2-12 —-4+6 6+15 -10 2 21
12 3
and BA=|45 {4 5 5}: 4-20 -8+10 12+25| =|-16 2 37
121 2—4 —4+2  6+5 -2 =2 11

Clearly AB # BA

In the above example both AB and BA are of different order and so AB # BA. But
one may think that perhaps AB and BA could be the same if they were of the same
order. But it is not so, here we give an example to show that even if AB and BA are of
same order they may not be same.

1 0 0 1 0 1
Example 14 If A= and B= ,then AB= .
0 -1 1 0 -1 0

0 -1
and BA = L 0] Clearly AB # BA.

Thus matrix multiplication is not commutative.
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This does not mean that AB # BA for every pair of matrices A, B for
which AB and BA, are defined. For instance,

i A=l %l B=| °| thenaB—BA=|> °
Tlo 2 "T|o 4 MERABEDBA= 1, g

Observe that multiplication of diagonal matrices of same order will be commutative.

Zero matrix as the product of two non zero matrices

‘We know that, for real numbers a, b if ab = 0, then either a =0 or b = 0. This need
not be true for matrices, we will observe this through an example.

. . 0 -1 35
Example 15 Find AB, if A= and B= .
0 2 0 0

0O -11]|3 5 0 0
Solution We have AB= = .
0O 2110 O 0 0

Thus, if the product of two matrices is a zero matrix, it is not necessary that one of
the matrices is a zero matrix.

3.4.6 Properties of multiplication of matrices

The multiplication of matrices possesses the following properties, which we state without
proof.

1. The associative law For any three matrices A, B and C. We have
(AB) C = A (BC), whenever both sides of the equality are defined.
2. The distributive law For three matrices A, B and C.
(i) AB+C)=AB +AC
(i) (A+B) C =AC + BC, whenever both sides of equality are defined.

3. The existence of multiplicative identity For every square matrix A, there
exist an identity matrix of same order such that IA = Al = A.

Now, we shall verify these properties by examples.

1 1 -1 13
1 2 3 -4
Example 16 If A={2 0 3|, B={0 2|and C= v 0 =2 11’ find
3 -1 2 -1 4

A(BC), (AB)C and show that (AB)C = A(BC).
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1 1 -1 13 1+40+1 3+2-4 2 1
Solution We have AB={2 0 3|| 0 2(={2+0-3 6+0+12|=|-1 18

3 -1 2||-1 4 3+40-2 9-2+8 115

21 1 2 3 -4 242 4+0 6-2 -—8+1
(AB) (C)=|-1 18 {2 0 2 J= -1+36 -2+0 -3-36 4+18
1 15 1+30 2+0 3-30 —-4+15

(4 4 4
35 -2 -39 22
131 2 =27 11

13 1+6 2+0 3-6 —4+3
1 2 3 -4
Now BC=| 02 { }: 0+4 040 0-4 0+2

2 02 1
|-14 —148 —2+0 -3-8 4+4
(7 2 -3 -1

_|4 04 2
7 =2 -11 8

1 -1((7 2 -3 -1
Therefore ABC)=(2 0 31||4 0 4 2
13 -1 2]|7-2 -11 8

[ 7+4-7 2+40+2 -3—-4+11 -1+2-8
=114+0+21 4+0-6 -6+0-33 -2+0+24
|21-4+14 6+0-4 -9+4-22 -3-2+16

(4 4 4 7

=3 72 39 220 Clearly, (AB)C=A (BC)

131 2 =27 11

2019-20



78 MATHEMATICS

0 6 7 01 1 2
Example 17 If A=|-6 0 8|,B=|1 0 2|,C=|=2
7 -8 0 1 20 3
Calculate AC, BC and (A + B)C. Also, verify that (A + B)C = AC + BC
0o 7 8
Solution Now, A+B=[-5 0 10
8 -6 0

o 7 811[2 0-14+24 10
So (A+B)C=|-5 0 10| |2 |=|-10+0+30 |=|20
|8 -6 0]|3 16+12+0 28

o 6 7|[271 [ 0=12+21 9
Further AC=|-6 0 8|2 |=-12+0+24 |=|12
|7 -8 0][3] | 14+1640 30

0 1 1][2] [0-2+3 1
and BC = 1 0 2|2 |=[2+0+6|=]| 8
11 2 0] 3] |2-4+40] -2
9 1 10
So AC+BC=|12|+| 8 |=]|20
130] |2 28
Clearly, (A+B)C=AC+BC
1 2 3
Example 18 If A=|3 -2 1], then show that A*-23A-401=0
4 2 1

1 2 3|1 2 3 19 4 8
Solution We have A*=AA=(3 -2 1|3 2 1|=|1 12 8
4 2 1(4 2 1 14 6 15
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1 2 3|19 4 8 63 46 69

So AP=AA*=|3 2 1|1 12 8|=l69 -6 23
4 2 1|14 6 15 92 46 63

Now
(63 46 69] 1 2 3 1 00
A3—-23A —-40I=|69 -6 23|-2313 -2 1]|-40/0 1 O
92 46 63] 4 2 1 0 01

[63 46 69] [-23 —46 -69] [-40 0O 0
=169 -6 23|+ -69 46 23|+ 0 40 O
92 46 63] |92 46 -23 0 0 -40

[63-23-40 46—-46+0 69-69+0
=[69-69+0 —-6+46-40 23-23+0
192-92+0  46-46+0 63-23-40

1l
o o o
©c o o
o o o
Il
o

Example 19 In a legislative assembly election, a political group hired a public relations
firm to promote its candidate in three ways: telephone, house calls, and letters. The
cost per contact (in paise) is given in matrix A as

Cost per contact

40 Telephone
A= 100 Housecall
50 Letter

The number of contacts of each type made in two cities X and Y is given by

Telephone Housecall Letter

B 1000 500 5000 [—»X
13000 1000 10,000|—Y

cities X and Y.

. Find the total amount spent by the group in the two
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Solution We have

40,000 + 50,000 + 250,000 | =X
~ 120,000 + 100,000 +500,000 | —Y

340,000 |—» X
~ 720,000

So the total amount spent by the group in the two cities is 340,000 paise and
720,000 paise, i.e., ¥3400 and ¥ 7200, respectively.

-Y

| EXERCISE 3.2|

2 4 1 3 -2 5
1. Let A= ,B= ,C=
3 2 -2 5 3 4

Find each of the following:

i A+B (i) A-B @) 3A-C
(iv) AB (v) BA
2. Compute the following:
la b a b . & +b® B+l 2ab  2bc
® + (i1) +
—b a b a at+c? at+bp*| |2ac 2ab

-1 4 —6] [12 7 6 2N ., L, ,
(iii) 8 5 16l+l8 0 5 (iv) COoS xS x}_{smx COSs x:|

2 8 5 3 2 4 _sinzx cos® x cos®x sin’x
3. Compute the indicated products.
. 1 )
| a Dbfla b o 12| 3 4 [t =271 2 3
Oy allp o) @5 by g 5
[2 4171 = (91
: ) > 1 01
iv) |3 4 5||0 2 4 v) |32 Do
14 5 6/|3 0 5 -11
- 2 -3
oy |27 3} o
vi
-1 0 2
- 3 1
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1 2 -3 3 -1 2 4 1 2
If A=|5 0 2|,B={4 2 5|andC=|0 3 2|, then compute
1 -1 1 2 0 3 1 2 3

(A+B) and (B — C). Also, verify that A+ B-C)=(A+B)-C.

2,03 23
3 3 5 5
1 2 4 1 2 4
If A=|— — —|and B=|- — —|, then compute 3A — 5B.
3 3 3 5 55
7T, 2 762
L3 3 LS 5 5.
o cos® sin®] . [sin® —cosH
Simplify cos®| +sin@ _
—sin® cosH | cos© sin©

Find X and Y, if

. 7 0 3 0
1 X+Y-= and X-Y =
25 10 3

.. 2 3 2 =2
1) 2X+3Y= and 3X+2Y =
4 0 -1 5

Find X, if Y 2/2 d2X+Y Lo
1n,1—14an +—_32

) ) 1 3 y 0| |5 6
Find x and y, if 2 + =
0 x 1 2 1 8

s ) t’ D 2 I 5

2 -1 10
If x 3 +y 1 = 5 , find the values of x and y.

6 4 +
Given 3 SRR P + Ty , find the values of x, y, z and w.
zw -1 2w z+w
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13.

14.

15.

16.

17.

18.

19.

MATHEMATICS

cosx -—sinx O
If F(x)=|sinx cosx 0|, show that F(x) F(y) = F(x + y).
0 0 1

Show that
s —1lf2 1] [2 1][5 -1
® #
16 7]3 4 3 4116 7
1 2 3][-1 1 o] [-1 1 o1 2 3
@ (0 1 00 -1 1|#| 0-1 1|]|0 1 O
|11 0jL2 3 4 2 3 4|1 1 0
2 0 1
Find A>-5A+6Lif A={2 1 3
1 -1 0
1 0 2
If A=|0 2 1], provethat A>—6A*+7A+21=0
12 0 3
(3 =2 1 o] .
If A= and I= , find k so that A? = kA — 21
|4 2 01
0 —tan 2
If A= 2 and I is the identity matrix of order 2, show that
tang 0
L 2
cosQ —sin
I+A=(0-A) { . }
sin0t  cosQ
A trust fund has ¥30,000 that must be invested in two different types of bonds.
The first bond pays 5% interest per year, and the second bond pays 7% interest
per year. Using matrix multiplication, determine how to divide ¥30,000 among
the two types of bonds. If the trust fund must obtain an annual total interest of:
(a) %1800 (b) %2000
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20. The bookshop of a particular school has 10 dozen chemistry books, 8 dozen
physics books, 10 dozen economics books. Their selling prices are ¥ 80, 360 and
%40 each respectively. Find the total amount the bookshop will receive from
selling all the books using matrix algebra.

Assume X, Y, Z, W and P are matrices of order 2 x n, 3 x k, 2 X p, n x 3 and p X k,
respectively. Choose the correct answer in Exercises 21 and 22.

21. The restriction on n, k and p so that PY + WY will be defined are:

(A) k=3,p=n (B) kis arbitrary, p =2
(C) pis arbitrary, k =3 D) k=2,p=3
22. If n = p, then the order of the matrix 7X — 5Z is:
(A) px2 (B) 2xn (C) nx3 (D) pxn

3.5. Transpose of a Matrix

In this section, we shall learn about transpose of a matrix and special types of matrices
such as symmetric and skew symmetric matrices.

Definition 3 If A= la,] be an m x n matrix, then the matrix obtained by interchanging
the rows and columns of A is called the transpose of A. Transpose of the matrix A is
denoted by A” or (A"). In other words, if A = [a_j] ,then A”=[a_] . Forexample,

j"mxn Jitnxm

305 33 0
if A=|3 1| ., then A'= -1
51 —
0 __1 2x3
5 3x2

3.5.1 Properties of transpose of the matrices

We now state the following properties of transpose of matrices without proof. These
may be verified by taking suitable examples.

For any matrices A and B of suitable orders, we have
O AY =A, (i) (kA) = kA’ (where k is any constant)
(i) (A+B)Y=A"+PB iv) (ABY =B’ A’

3 43 2 2 -1 2
Example 20 If A= V3 and B= , verify that
4 2 0 I 2 4
i) (A) =A, (i) (A+B)Y=A"+B,
(iii) (kB)" = kB’, where k is any constant.
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Solution
(1) We have
NE . NG
A=|:j- 23 2:|:>A/= \/5 2 :}(A/)/:|:3 23
0 20
Thus (A" =A
(i) We have
[2 -1 2 _
A: 3 \/§ 2 ,B: :|:>A+B= 5 \/§ 1 4
4 2 0 |1 24 3
s ¢
Therefore (A+BY=|/3-1 4
| 4 4
(34 21
Now A’ = \/52’]3/=—1 21,
120 2 4
" s S
So AN+B =|3-14
L 4 4
Thus (A+BY=A"+B’
(i) We have
kB=k2—l2=2k -k 2k
I 2 4] |k 2k 4k
2k k (21
Then (kBY = |-k 2k |=k|-1 2 |=kB’
2k 4k | 2 4
Thus (kB) = kB’

MATHEMATICS
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-2
Example 21 If A=| 4 |,B=[1 3 -6], verify that (AB) = B’A’.
5
Solution We have
Py
A=| 4[-B=[1 3 -6]
— 5 -
2] -2 -6 12
then AB=| 4|1 3 -6]=|4 12 -24
| 5 5 15 =30
.
Now A'=[-245],B'=| 3
_6_
1 2 4 5
BA=| 3|[-2 4 5]=|-6 12 15|=(ABY
-6 112 =24 30
Clearly (AB) =B’A’

3.6 Symmetric and Skew Symmetric Matrices

Definition 4 A square matrix A = [aij] is said to be symmetric if A’ = A, that is,
[a,-,-] = [ajl.] for all possible values of i and j.

V32003

For example A=| 2 —1.5 —1 | is a symmetric matrix as A" = A
3 -1 1

Definition 5 A square matrix A = [aij] is said to be skew symmetric matrix if
A’ =—A, that is a,=-a, for all possible values of i and j. Now, if we put i =j, we
have a, = — a,. Therefore 2a, = 0 or a, = 0 for all i’s.

This means that all the diagonal elements of a skew symmetric matrix are zero.
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0 e f
Forexample, the matrix B=| —e 0 g | is a skew symmetric matrix as B'=-B
-f ¢ 0

Now, we are going to prove some results of symmetric and skew-symmetric
matrices.

Theorem 1 For any square matrix A with real number entries, A + A” is a symmetric
matrix and A — A’ is a skew symmetric matrix.
Proof Let B=A + A’, then

B'= (A+AY
=A"+(A)Y (as(A+B)Y=A"+B)
= A"+A(as (A) =A)
= A+A"(asA+B=B+A)
=B
Therefore B = A+A’is asymmetric matrix
Now let C=A-A
C=A-AY=A"-A)Y (Why?
= A"-A (Why?)
=-(A-A)=-C
Therefore C= A-A’is askew symmetric matrix.

Theorem 2 Any square matrix can be expressed as the sum of a symmetric and a
skew symmetric matrix.

Proof Let A be a square matrix, then we can write
A—l(A+A') +l (A-A")
2 2
From the Theorem 1, we know that (A + A”) is a symmetric matrix and (A—A") is

1 ,
a skew symmetric matrix. Since for any matrix A, (kA)"=kA’, it follows that 5 (A+A)

1 ,
is symmetric matrix and 2 (A—=A’) is skew symmetric matrix. Thus, any square

matrix can be expressed as the sum of a symmetric and a skew symmetric matrix.
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2 -2 4
Example 22 Express the matrix B={—1 3 4| as the sum of a symmetric and a
1 -2 -3
skew symmetric matrix.
Solution Here
2 -1 1
B'=|-2 3 =2
-4 4 3
4 -3 3
1 W1 -3
Let P=—B+B)=—|-3 6 2l =|— 3 1]/
2 2 3 2 -6 g
213
[, 3 3] - -
2 2
, -3
Now P=|— 3 1 |=P
2
2y 5
L2 J
1 " . .
Thus P E(B +B’) is a symmetric matrix.
F o s
—
0 -1 -5 2 2
1 W1 1
Also, let =—B-B)=—|1 0 6|=|— 0 3
2 2 s 6 0 2
> -3 0
L2 J
0 1 2
2 3
, -1
Then Q' = > 0 -3|=-Q
= 30
L 2 J
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1 ”" . ) )
Thus Q= E (B-B) is a skew symmetric matrix.
, 3 3| |y 22
2 2 2 2 7 9 4
Now P+Q= _73 3 1 +% 3 |=|-1 3 4|=B
1 2 3
_—3 1 -3 é -3 0
L 2 J L2 i

Thus, B is represented as the sum of a symmetric and a skew symmetric matrix.

|EXERCISE 3.3|
1. Find the transpose of each of the following matrices:
> . 156
L] . y
| (i {2 3} Gi) |3 5 6
1 2 3 -1
-1 2 3 -4 1 =5
2. If A=| 5 7 9land B=| 1 2 0], then verify that
-2 1 1 1 3 1
(i) (A+BY=A"+B, () (A-B)Y=A"-PB
(3 4
, -1 21 _
3. f A’'=|-1 2| and B= | 2 3 , then verify that
101
(i) (A+B)Y=A"+PB () (A-B)Y=A"-PB
, =23 -1 0 .
4. If A'= and B= , then find (A + 2B)’
|1 2 1 2

5. For the matrices A and B, verify that (AB)” = B’A’, where

1 0
() A=4 |,B=[-1 2 1] G) A=|1|,B=[1 5 7]
3 2
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coso.  sin QL

If (i) A{

: } , then verify that A" A =1
—sina  coso

sind  cosol
@ If A= { . } , then verify that A" A =1
—coso  sino
(1 -15
(i) Show that the matrix A =|—1 2 1| is a symmetric matrix.
|5 1 3
0 1 -1
(i) Show that the matrix A={-1 0 1 |isaskew symmetric matrix.
1 -1 0

15
For the matrix A = {6 7} , verify that

(i) (A +A’)is a symmetric matrix

(ii)) (A—A")is askew symmetric matrix

0 a b

1 , 1 ,
Find E(A+A) and E(A—A),when A=l-a 0 ¢
-b - 0

Express the following matrices as the sum of a symmetric and a skew symmetric
matrix:

_ 6 2 2
L1305 N
ON (i

- |2 -1 3
cee 3 3 _1 . 1 5

@ |-2 -2 1 @v) | _ 1 2

-4 -5 2 -
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Choose the correct answer in the Exercises 11 and 12.

11. If A, B are symmetric matrices of same order, then AB — BA is a

(A) Skew symmetric matrix (B) Symmetric matrix
(C) Zero matrix (D) Identity matrix
o -—sina
12. If A= {C_OS - }, and A+ A’ =1, then the value of o is
sin o cos o
(A) z (B) >
6 3
3n
©C) = (D) 5

3.7 Elementary Operation (Transformation) of a Matrix

There are six operations (transformations) on a matrix, three of which are due to rows
and three due to columns, which are known as elementary operations or
transformations.

(1) The interchange of any two rows or two columns. Symbolically the interchange
of i* and j* rows is denoted by R, <> R, and interchange of i and j* column is
denoted by C, <> C.. '

1 2 1 -1 31
For example, applying R, <> R, to A =|-1 V31|, weget| 1 2 1.
5 6 7 5 6 7

(i) The multiplication of the elements of any row or column by a non zero
number. Symbolically, the multiplication of each element of the i row by &,
where k # 0 is denoted by R, — kR..

The corresponding column operation is denoted by C, — kC,

1 21 b2

, we get
-1 V3 J TN

1

. 1 7

For example, applying C, - —C,, toB= 1
7 -

7

(i) The addition to the elements of any row or column, the corresponding
elements of any other row or column multiplied by any non zero number.

Symbolically, the addition to the elements of i row, the corresponding elements
of j* row multiplied by k is denoted by R. — R. + kR}_.
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The corresponding column operation is denoted by C, — C, + kC.,.

1 2 1 2
For example, applying R, - R, -2R ,to C= {2 J, we get {0 5} .

3.8 Invertible Matrices

Definition 6 If A is a square matrix of order m, and if there exists another square
matrix B of the same order m, such that AB = BA =1, then B is called the inverse
matrix of A and it is denoted by A~'. In that case A is said to be invertible.

2 3 2 -3 :
For example, let A= and B = be two matrices.
|12 -1 2
[2 3] 2 -3
Now AB = 1 o2]-1 2
__4—3 -6+6| |1 0O Q
S l2-2 -3+4) |0 1]
1 0 G :
Also BA = o V1 =1. Thus B is the inverse of A, in other

words B = A-!and A is inverse of B, i.e., A= B!

1. A rectangular matrix does not possess inverse matrix, since for products BA
and AB to be defined and to be equal, it is necessary that matrices A and B
should be square matrices of the same order.

2. If B is the inverse of A, then A is also the inverse of B.

Theorem 3 (Uniqueness of inverse) Inverse of a square matrix, if it exists, is unique.

Let A = [aij] be a square matrix of order m. If possible, let B and C be two
inverses of A. We shall show that B = C.

Since B is the inverse of A

AB =BA =1 .. (1)
Since C is also the inverse of A

AC=CA=1 .. 2)
Thus B=BI=B(AC)=(BA)C=IC=C

Theorem 4 If A and B are invertible matrices of the same order, then (AB)! = B! AL
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From the definition of inverse of a matrix, we have

(AB) (AB)!' =1
or A (AB) (AB)! = Al (Pre multiplying both sides by A™")
or (AA) B (AB)' = A" (Since A" T=A")
or IB (AB)!=A"!
or B (AB)!'=A"!
or B' B (AB)!' =B A"!
or I(AB)!' =B! A™!
Hence (AB)!' =B A”!

3.8.1 Inverse of a matrix by elementary operations

Let X, A and B be matrices of, the same order such that X = AB. In order to apply a
sequence of elementary row operations on the matrix equation X = AB, we will apply
these row operations simultaneously on X and on the first matrix A of the product AB
on RHS.

Similarly, in order to apply a sequence of elementary column operations on the
matrix equation X = AB, we will apply, these operations simultaneously on X and on the
second matrix B of the product AB on RHS.

In view of the above discussion, we conclude that if A is a matrix such that A™!
exists, then to find A™! using elementary row operations, write A = IA and apply a
sequence of row operation on A = IA till we get, I = BA. The matrix B will be the
inverse of A. Similarly, if we wish to find A~ using column operations, then, write
A = Al and apply a sequence of column operations on A = Al till we get, [ = AB.

Remark In case, after applying one or more elementary row (column) operations on
A =TA (A = Al), if we obtain all zeros in one or more rows of the matrix A on L.H.S.,
then A~ does not exist.

Example 23 By using elementary operations, find the inverse of the matrix

sy 2]

Solution In order to use elementary row operations we may write A = [A.

v o), [ 2o, X on
= , then = —
of 2 —1] |0 1 0 _5| | 1|* (@pplyingR,>R,-2R)
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- - 1
1 2 0 1
or =2 -1|A (applyingR, - - —R))
0 1 - — : 5 72
- - LS 5]
_l 2 -
1 0] _|5 s .
or 0 1 = 2 4 A (applying R, - R, —2R))
LS 5]
_l 2 -
5 5
-1 _
Thus Al = 2 -1
L5 5.

Alternatively, in order to use elementary column operations, we write A = Al i.e.,
1 2] 1 0
= A
2 -1 10 1
Applying C, = C, - 2C, we get

1 0] 1 -2
= A
{2 =5 0 1}

Now applying C, — —éCz, we have

2

1 =
{1 0} { A 51
2 1 o L

L 5

Finally, applying C, — C, - 2C,, we obtain

L2

1 0 _A 5 5
0172 o

LS 5

LI

5 5

-1 —
Hence Al = 2 -1
5 5
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Example 24 Obtain the inverse of the following matrix using elementary operations

01 2
A=

Ll N

1
3

or
or

or

or

or

or

3.

1
0 O|A (applyingR, <> R))
0 1

3 0 1 0
=|1 0 OJ]A (applyingR, - R,-3R))
-8 0 -3 1

-1 -2 1 0
2/=|1 0 O0|A (applyingR, - R, -2R))
-8 0 -3 1

-1 -2 1 0
2|1=|1 0 O0|A (applyingR, - R,+5R))
1

2 ] 5 3
1] -2 1 0
2| = ! 014 (applying R, — L R)
| > 301 o2
- 2 2 2
I -1 1
o] |2 2 2
2(=11 0 O]A (applyingR, >R +R))
1 5 3 1
2 2 2
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} A (applying R, - R,-2R,)

-1

or

Hence

Al i.e.,

Alternatively, write A

(C, < C)

A0 10

0
Al 0 O
0

1 2 3

or

or

or

or

-
©) T
| + @)
J’ J’ =l
o o o
@) @) @)
N N N
1
—— o < o — o (e}
S —~ O — (e) — O_
< < <
1l 1l 1l
S 7o o o o
v S — on
S — on
@\ —_— O —
—_ A — 1 |
1
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1
00 -2 1 E
or 0 1 0 = A 1 0 -1 (C1_>C1_2C2)
-5 3 1
0O 0 l
L 2
1
0 0 2 2
or 01 0j=A|-4 0 -1 (C1—>C1+5C3)
03 5,1
L 2 2
=
1 00 ) R
or 01 O0|l=A|-4 3 -1 (C2—>C2—3C3)
001 |5 31
L2 2 2
r -t 1
2 2 2
Hence Al=|-4 3 -1
5.3 1
2 2 2

10 -2
Example 25 Find P!, if it exists, given P ={ 5 J .

) 10 -2 10
Solution We have P=1P, i.e., = P.

=5 1 0 1
TR P !
or 51=1|10 P (applying R, — ERI)
=5 1 0 1

2019-20



MATRICES 97

p 2L =0
or 5| = 10 P (applying R, > R, + 5R))
0 O 1 1
2

We have all zeros in the second row of the left hand side matrix of the above
equation. Therefore, P~' does not exist.

| EXERCISE 3.4

Using elementary transformations, find the inverse of each of the matrices, if it exists
in Exercises 1 to 17.

1 -1 [2 1 (1 3]
1. 2. 3. I3
2 3 11 2 7
[2 3] [2 1] [2 5]
4 5. 6
15 7] |7 4] |1 3]
(3 1] [4 5] (3 10
7 8. 9
|5 2] 13 4] L 7
10 3 1] 1 [2 -6 - 6 -3
Cl4 2] L2 21
(2 -3 21 2 303
13. - 14. . 15. 12 2 3
-1 2 4 2
- - - 13 2 2
(1 3 =2 2 0 -1
16. |-3 0 -5 17. 15 1 0
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